Neurons in the primate middle temporal (MT) area signal information about visual motion and work together with the lateral prefrontal cortex (LPFC) to support memory-guided comparisons of visual motion direction. These areas are reciprocally connected, and both contain neurons that signal visual motion direction in the strength of their responses. Previously, LPFC was shown to display marked changes in stimulus coding with altered task demands, including changes in selectivity for motion direction, trial-to-trial variability in responses and comparison effects. Since MT and LPFC are directly interconnected, we sought to determine if MT neurons display similar dependence on task demands. We found that active participation in a motion direction comparison task affected both sensory and nonsensory activity in MT neurons. In fact, neurons that became less selective for motion direction during the active task showed increased signalling for cognitive aspects of the task. This heterogeneity in neural modification with heightened task demands suggests a division of labour in MT, whereby sensory and cognitive signals are both heightened in different subpopulations of neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.15964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!