A layered Li[NiCoMn]O (NCM)-based cathode is preferred for its high theoretical specific capacity. However, the two main issues that limit its practical application are severe safety issues and excessive capacity decay. A new electrode processing approach is proposed to synergistically enhance the electrochemical and safety performance. The polyimide's (PI) precursor is spin-coated on the LiNiCoMnO (NCM523) electrode sheet, and the homogeneous sulfonated PI layer is in situ produced by thermal imidization reaction. The PI-spin coated (PSC) layer provides improvements in capacity retention (86.47% vs 53.77% after 150 cycles at 1 C) and rate performance (99.21% enhancement at 5 C) as demonstrated by the NCM523-PSC||Li half-cell. The NCM523-PSC||graphite pouch full cell proves enhanced capacity retention (76.62% vs 58.58% after 500 cycles at 0.5 C) as well. The thermal safety of the NCM523-PSC cathode-based pouch cell is also significantly improved, with the critical temperature of thermal safety (the beginning temperature of obvious self-heating temperature) and thermal runaway temperature increased by 60.18 and 44.59 °C, respectively. Mechanistic studies show that the PSC layer has multiple effects as a passivation layer such as isolation of electrode-electrolyte contact, oxygen release suppression, solvation structure tuning, and the decomposition of carbonate solvents as well as LiPF inhibition. This work provides a new path for a cost-effective and scalable design of electrode decoration with synergistic safety-electrochemical kinetics enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c00636DOI Listing

Publication Analysis

Top Keywords

electrode processing
8
processing approach
8
psc layer
8
capacity retention
8
thermal safety
8
temperature thermal
8
safety
5
cake eating
4
electrode
4
eating electrode
4

Similar Publications

Visual processing is crucial for sports performance, influencing athletes' ability to interpret and respond to visual stimuli. This study investigated distinct visual processing patterns among Thai elite athletes in gymnastics, soccer, and esports, utilizing visual P300 event-related potentials (P300 ERPs). Forty-two female athletes (14 gymnasts, 14 soccer players, and 14 esports athletes) participated.

View Article and Find Full Text PDF

Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.

View Article and Find Full Text PDF

Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)] ions.

View Article and Find Full Text PDF

Recent Advances on Characterization Techniques for the Composition-Structure-Property Relationships of Solid Electrolyte Interphase.

Small Methods

January 2025

College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China.

The Solid Electrolyte Interphase (SEI) is a nanoscale thickness passivation layer that forms as a product of electrolyte decomposition through a combination of chemical and electrochemical reactions in the cell and evolves over time with charge/discharge cycling. The formation and stability of SEI directly determine the fundamental properties of the battery such as first coulombic efficiency (FCE), energy/power density, storage life, cycle life, and safety. The dynamic nature of SEI along with the presence of spatially inhomogeneous organic and inorganic components in SEI encompassing crystalline, amorphous, and polymeric nature distributed across the electrolyte to the electrolyte-electrode interface, highlights the need for advanced in situ/operando techniques to understand the formation and structure of these materials in creating a stable interface in real-world operating conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!