Inhibition of erythrocyte's catalase, glutathione peroxidase or peroxiredoxin 2 - Impact on cytosol and membrane.

Arch Biochem Biophys

UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal. Electronic address:

Published: May 2023

Catalase (CAT), glutathione peroxidase (GPx) and Prx2 (peroxiredoxin 2) are the main antioxidant enzymatic defenses of erythrocytes. They prevent and minimize oxidative injuries in red blood cell (RBC) components, which are continuously exposed to oxidative stress (OS). The crosstalk between CAT, GPx and Prx2 is still not fully disclosed, as well as why these typically cytoplasmic enzymes bind to the RBC membrane. Our aim was to understand the interplay between CAT, GPx and Prx2 in the erythrocyte's cytosol and membrane. Under specific (partial) inhibition of each enzyme and increasing HO-induced OS conditions, we evaluated the enzyme activities and amounts, the binding of CAT, GPx and Prx2 to RBC membrane, and biomarkers of OS, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. Our results support the hypothesis that when high levels of HO get within the erythrocyte, CAT is the main player in the antioxidant protection of the cell, while Prx2 and GPx have a less striking role. Moreover, we found that CAT, appears to have more importance in the antioxidant protection of cytoplasm than of the membrane components, since when the activity of CAT is disturbed, GPx and Prx2 are both activated in the cytosol and mobilized to the membrane. In more severe OS conditions, the antioxidant activity of GPx is more significant at the membrane, as we found that GPx moves from the cytosol to the membrane, probably to protect it from lipid peroxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2023.109569DOI Listing

Publication Analysis

Top Keywords

gpx prx2
20
cytosol membrane
12
cat gpx
12
membrane
9
glutathione peroxidase
8
gpx
8
rbc membrane
8
antioxidant protection
8
cat
7
prx2
6

Similar Publications

Influence of inhibiting methemoglobin formation on erythrocyte antioxidant defense.

Arch Biochem Biophys

October 2024

UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal.

We aimed to study the influence of preventing methemoglobin (metHb) formation, in the roles of peroxiredoxin 2 (Prx2), glutathione peroxidase (GPx) and catalase (CAT) on the erythrocyte antioxidant defense system. We performed in vitro assays using healthy erythrocytes, with and without inhibition of autoxidation of Hb (saturation with carbon monoxide), followed by HO-induced oxidative stress. We assessed the enzyme activities and amounts of CAT, GPx and Prx2 in the red blood cell (RBC) cytosol and membrane and several biomarkers of oxidative stress, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status.

View Article and Find Full Text PDF

Catalase, Glutathione Peroxidase, and Peroxiredoxin 2 in Erythrocyte Cytosol and Membrane in Hereditary Spherocytosis, Sickle Cell Disease, and β-Thalassemia.

Antioxidants (Basel)

May 2024

UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal.

Catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2) can counteract the deleterious effects of oxidative stress (OS). Their binding to the red blood cell (RBC) membrane has been reported in non-immune hemolytic anemias (NIHAs). Our aim was to evaluate the relationships between CAT, GPx, and Prx2, focusing on their role at the RBC membrane, in hereditary spherocytosis (HS), sickle cell disease (SCD), β-thalassemia (β-thal), and healthy individuals.

View Article and Find Full Text PDF

Reticulocyte Antioxidant Enzymes mRNA Levels versus Reticulocyte Maturity Indices in Hereditary Spherocytosis, β-Thalassemia and Sickle Cell Disease.

Int J Mol Sci

February 2024

UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal.

The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxin 2 (Prx2) are particularly important in erythroid cells. Reticulocytes and other erythroid precursors may adapt their biosynthetic mechanisms to cell defects or to changes in the bone marrow environment. Our aim was to perform a comparative study of the mRNA levels of and in reticulocytes from healthy individuals and from patients with hereditary spherocytosis (HS), sickle cell disease (SCD) and β-thalassemia (β-thal), and to study the association between their transcript levels and the reticulocyte maturity indices.

View Article and Find Full Text PDF

Inhibition of erythrocyte's catalase, glutathione peroxidase or peroxiredoxin 2 - Impact on cytosol and membrane.

Arch Biochem Biophys

May 2023

UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal. Electronic address:

Catalase (CAT), glutathione peroxidase (GPx) and Prx2 (peroxiredoxin 2) are the main antioxidant enzymatic defenses of erythrocytes. They prevent and minimize oxidative injuries in red blood cell (RBC) components, which are continuously exposed to oxidative stress (OS). The crosstalk between CAT, GPx and Prx2 is still not fully disclosed, as well as why these typically cytoplasmic enzymes bind to the RBC membrane.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant whose mechanisms of action involve oxidation of endogenous nucleophilic groups (mainly thiols and selenols), depletion of antioxidant defenses, and disruption of neurotransmitter homeostasis. Diphenyl diselenide-(PhSe)-a model diaryl diselenide, has been reported to display significant protective effects against MeHg-induced neurotoxicity under both in vitro and in vivo experimental conditions. In this study, we compared the protective effects of (PhSe) with those of RC513 (4,4'-diselanediylbis(2,6-di-tert-butylphenol), a novel diselenide-probucol-analog) against MeHg-induced toxicity in the neuronal (hippocampal) cell line HT22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!