Sub-inhibitory concentrations of ampicillin affect microbial Fe(III) oxide reduction.

J Hazard Mater

Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China. Electronic address:

Published: June 2023

Antibiotics are ubiquitous in the iron-rich environments but their roles in microbial reduction of Fe(III) oxides are still unclear. Using ampicillin and Geobacter soli, this study investigated the underlying mechanism by which antibiotic regulated microbial reduction of Fe(III) oxides. Results showed that sub-minimal inhibitory concentrations (sub-MIC) of ampicillin significantly affected ferrihydrite reduction by G. soli, with a stimulatory effect at 1/64 and 1/32 MIC and an inhibitory effect at 1/8 MIC. Increasing ampicillin concentration resulted in increasing cell length and decreasing bacterial zeta potential that were beneficial for ferrihydrite reduction, and decreasing outer membrane permeability that was unfavorable for ferrihydrite reduction. The respiratory metabolism ability was enhanced by 1/64 and 1/32 MIC ampicillin and reduced by 1/8 MIC ampicillin, which was also responsible for regulation of ferrihydrite reduction by ampicillin. The ferrihydrite reduction showed a positive correlation with the redox activity of extracellular polymeric substances (EPS) which was tied to the cytochrome/polysaccharide ratio and the content of α-helices and β-sheet in EPS. These results suggested that ampicillin regulated microbial Fe(III) oxide reduction through modulating the bacterial morphology, metabolism activity and extracellular electron transfer ability. Our findings provide new insights into the environmental factors regulating biogeochemical cycling of iron.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131131DOI Listing

Publication Analysis

Top Keywords

ferrihydrite reduction
20
reduction
9
ampicillin
8
microbial feiii
8
feiii oxide
8
oxide reduction
8
microbial reduction
8
reduction feiii
8
feiii oxides
8
regulated microbial
8

Similar Publications

Influence of calcium carbonate on ferrihydrite bio-transformation and associated arsenic mobilization/redistribution.

Environ Pollut

December 2024

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.

View Article and Find Full Text PDF

Hydrous ferric arsenate transformation coupled with As, Fe, and S environmental cycling in sulfidic systems under anoxic and circumneutral conditions.

Sci Total Environ

December 2024

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Despite many studies on the environmental cycling of As, Fe, and S, sulfide (S(-II))-induced hydrous ferric arsenate (HFA) transformation remains to be elucidated. Herein, we investigated the anaerobic reaction of HFA with S(-II) at three environmental concentrations (1, 10, and 50 mM) at pH 48. Changes in solid-phase As, Fe, and S speciation were investigated by XRD, FTIR, Raman, XPS, synchrotron XANES, SEM, and TEM.

View Article and Find Full Text PDF

Banded iron formations (BIFs) are chemical sedimentary rocks commonly utilized for exploring the chemistry and redox state of the Precambrian ocean. Despite their significance, many aspects regarding the crystallization pathways of iron oxides in BIFs remain loosely constrained. In this study, we combine magnetic properties characterization with high-resolution optical and electron imaging of finely laminated BIFs from the 2.

View Article and Find Full Text PDF

This study investigates the impact of intense rainfall on chromium concentrations in five springs discharging from ultramafic rocks in the Northern Apennines (Italy), which are used for drinking water supply through integration into the local water network. Total chromium concentration increased significantly in response to heavy rain, exceeding the WHO drinking water guideline value (up to 80 μg/L) in one spring and the forthcoming 2036 EU target of 25 μg/L in all the springs. This increase could be attributed to a synergistic combination of factors: i) the reduction of Cr(VI) to Cr(III) by natural organic matter (NOM) in soil and transport as NOM-Cr(III) colloids and/or during the oxidation of magnetite to ferrihydrite in the aquifer; ii) the abundance of detrital ultramafic material in the study area, which may store Cr(III)-bearing colloids too; iii) a triggering effect of first intense rainfall after a 20 dry consecutive days period (wet-dry cycle).

View Article and Find Full Text PDF

Microbial nitrate reduction coupled to iron(II) oxidation (NRFeOx) occurs in paddy soils due to high levels of dissolved iron(II) and regular application of nitrogen fertilizer. However, to date, there is no lithoautotrophic NRFeOx isolate or enrichment culture available from this soil environment. Thus, resulting impacts on greenhouse gas emissions during nitrate reduction (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!