Effect of Using Manufacturer-recommended Exposure Times to Photo-activate Bulk-fill and Conventional Resin-based Composites.

Oper Dent

*Carlos José Soares, Department of Operative Dentistry and Dental Materials, Dental School, Federal University of Uberlândia, Minas Gerais, Brazil.

Published: May 2023

Objectives: To analyze the effect of using the resin-based composite manufacturer's recommended exposure time on the degree of conversion (DC), Knoop hardness (KH), and elastic modulus (E) of conventional and bulk-fill resin-based composites (RBCs).

Methods: Three resin-based composites (RBCs) were tested: Tetric EvoCeram Bulk Fill (TET), Opus Bulk Fill APS (OPU), and RBC Vittra APS (VIT). They were photo-activated in 2 mm deep, 6 mm diameter molds for their recommended exposure times of 10 seconds, 20 seconds, or 40 seconds from four light-curing units (LCUs). Two delivered a single emission peak in the blue light region (Optilight Max and Radii-Cal) and two delivered multiple emission peaks in the violet and blue region (VALO Cordless and Bluephase G2). After 24 hours of dry storage at 37°C in the dark, the KH (Kgf/mm2), E (MPa) and DC (%) at the top and bottom surfaces of specimens (n=5) were measured and the results analyzed by 2-way analysis of variance (ANOVA) followed by a Tukey test (α=0.05).

Results: The irradiance (mW/cm2) and spectral irradiance (mW/cm2/nm) from the LCUs were reduced significantly (8-35%) after passing through 2.0 mm of RBC (p<0.001). The DC at the bottom of VIT and TET was less than at the top surface (p<0.001). OPU had the same DC at the top and bottom surface (p=0.341). The KH and E values at the top surface of VIT and TET were substantially higher than at the bottom (p<0.001). OPU exposed for 40 seconds achieved higher mechanical properties than TET that was photo-activated for 10 seconds (p<0.001). The opacity of different bulk-fill RBCs changed differently during the polymerization; OPU became more opaque, whereas TET became more transparent. When exposed for their recommended times, the 2 mm thick RBCs that used Ivocerin or the APS photoinitiator system were adequately photo-activated using either the single or multiple emission peak LCUs (p=0.341).

Conclusion: After 24 hours' storage, all the 2 mm thick RBCs photo-cured in 6 mm diameter molds achieved a bottom-to-top hardness ratio of at least 80% when their recommended exposure times were used. TET, when photo-activated for 10 seconds, achieved lower mechanical properties than OPU that had been photo-activated for 40 seconds. The change in opacity of the RBCs was different during photo-activation.

Download full-text PDF

Source
http://dx.doi.org/10.2341/22-021-LDOI Listing

Publication Analysis

Top Keywords

resin-based composites
12
exposure times
8
recommended exposure
8
bulk fill
8
seconds seconds
8
manufacturer-recommended exposure
4
times photo-activate
4
photo-activate bulk-fill
4
bulk-fill conventional
4
resin-based
4

Similar Publications

Objective: To compare the translucency and contrast ratio of 13 different resin based restorative materials and to evaluate the effect of 2 different bleaching methods on the translucency and contrast ratio of these materials.

Methods: In this study, a total of 260 samples were prepared, 20 from each of 13 different dimethacrylate-based restorative materials. Then, each material group was divided into 4 subgroups.

View Article and Find Full Text PDF

Universal shade flowable composites have been introduced to mimic tooth structure with reduced color mismatch and reduced chair time and cost. However, the polymerization shrinkage of resin material may lead to sensitivity and restoration failure. The purpose of this study was to compare the polymerization shrinkage of recently introduced universal shade flowable resin-based composites using both wet and dry density methods.

View Article and Find Full Text PDF

Trends in pH-triggered strategies for dental resins aiming to assist in preventing demineralization: A scoping review.

J Dent

December 2024

Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro (UFRJ), Rodolpho Paulo Rocco, 325, Rio de Janeiro, RJ 21941-617, Brazil. Electronic address:

Objectives: To identify and map the literature on the current state of pH-triggered strategies for resin-based materials used in direct restorative dentistry, focusing on innovative compounds, their incorporation and evaluation methods, and the main outcomes.

Data And Sources: Through a search across PubMed, Scopus, Embase, Web of Science, LILACS, Cochrane Library databases, and Google Scholar, this review identified studies pertinent to pH-responsive dental materials, excluding resin-modified glass ionomer cements.

Study Selection: From the 981 records identified, 19 in vitro studies were included, concentrating on resin-based composite resins (50 %), dentin adhesives (25 %), and sealants (25 %).

View Article and Find Full Text PDF

Objective: To assess the color stability and surface roughness of bioactive resin-based composite following exposure to coffee staining and brushing with whitening toothpastes.

Methods: Disk-shaped specimens of Filtek Z250 (FZ), Beautifil Flow Plus (BFP), Activa Presto (AP), and Fuji II LC (FII) were stained with coffee and then brushed with one of three toothpastes, conventional (C-TP), non-peroxide whitening (W-TP) or hydrogen peroxide-containing whitening toothpaste (HPW-TP) for 10 000 cycles. Changes in color (ΔE) and surface roughness were measured.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the hydrolytic behavior of different computer-aided design/computer-aided manufacturing (CAD/CAM) resin matrix ceramics (RMCs) in different food-simulating liquids (FSLs).

Materials And Methods: Five different CAD/CAM blocks, one from polymer-infiltrated ceramic networks (PICNs; Vita Enamic (EN)) and four from resin-based composites (RBCs; Lava Ultimate (UL), Cerasmart (CER), Brilliant Crios (BR), and Block HC (HC)) were selected. Forty specimens were prepared for each material, and they randomly distributed to each FSLs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!