Intergenic genomic regions have essential regulatory and structural roles that impose constraints on their sequences. But regions that do not currently encode proteins also carry the potential to do so in the future. De novo gene emergence, the evolution of novel genes out of previously noncoding sequences has now been established as a potent force for genomic novelty. Recently, it was shown that intergenic regions in the genome of Saccharomyces cerevisiae harbor pervasive cryptic potential to, if theoretically translated, form transmembrane domains (TM domains) more frequently than expected by chance given their nucleotide composition, a property that we refer to as TM-forming enrichment. The source and biological relevance of this property is unknown. Here, we expand the investigation into the TM-forming potential of intergenic regions to the entire Saccharomycotina budding yeast subphylum, in an effort to explain this property and understand its importance. We find pervasive but variable enrichment in TM-forming potential across the subphylum regardless of the composition and average size of intergenic regions. This cryptic property is evenly spread across the genome, cannot be explained by the hydrophobic content of the sequence, and does not appear to localize to regions containing regulatory motifs. This TM-forming enrichment specifically, and not the actual TM-forming potential, is associated, across genomes, with more TM domains in evolutionarily young genes. Our findings shed light on this newly discovered feature of yeast genomes and constitute a first step toward understanding its evolutionary importance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063215 | PMC |
http://dx.doi.org/10.1093/molbev/msad059 | DOI Listing |
Anal Cell Pathol (Amst)
January 2025
Department of Urology, The First Hospital of Jilin University, Changchun, China.
This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.
View Article and Find Full Text PDFInt J Microbiol
January 2025
Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan.
-a facultative intracellular pathogen of macrophages-causes bronchopneumonia in foals and patients who are immunocompromised. Virulent strains of possess a virulence-associated plasmid, which encodes a 15- to 17-kDa surface protein called virulence-associated protein A (VapA). VapA expression is regulated by temperature and pH.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
January 2025
Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
Background: Variants in the gene, encoding guanosine triphosphate cyclohydrolase, are associated with dopa-responsive dystonia (DRD) and are considered risk factors for parkinson's disease.
Methods: Comprehensive neurological assessments documented motor and non-motor symptoms in a Chinese family affected by DRD. Whole-exome sequencing (WES) was employed to identify potential mutations, with key variants confirmed by Sanger sequencing and analyzed for familial co-segregation.
RNA Biol
December 2025
Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany.
RNA elements play pivotal roles in regulatory processes, e.g. in transcriptional and translational regulation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Dept of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India. Electronic address:
Noncoding small RNAs are essential for modulating bacterial gene expression, especially under carbon and nutrient-limited conditions. In this study, by employing both in silico and molecular hybridization tools, we identified a carbon source responsive small RNA in A. baumannii DS002.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!