Trichomoniasis is the most common nonviral sexually transmitted infection, affecting an estimated 275 million people worldwide. The causative agent is the parasitic protozoan . Although the disease itself is typically mild, individuals with trichomonal infections have a higher susceptibility to more serious conditions. The emergence of parasite strains resistant to current therapies necessitates the need for novel treatment strategies. Since is an obligate parasite that requires nucleoside salvage pathways, essential nucleoside ribohydrolase enzymes are promising new drug targets. Fragment screening and X-ray crystallography have enabled structure-guided design of inhibitors for two of these enyzmes. Linkage of enzymatic and antiprotozoal activity would be a transformative step toward designing novel, mechanism-based therapeutic agents. While a correlation with inhibition of purified enzyme would be mechanistically suggestive, a correlation with inhibition of in-cell enzyme activity would definitively establish this linkage. To demonstrate this linkage, we have translated our NMR-based activity assays that measure the activity of purified enzymes for use in cells. The F NMR-based activity assay for the pyrimidine-specific enzyme translated directly to in-cell assays. However, the H NMR-based activity assay for the purine-specific enzyme required a switch from adenosine to guanosine substrate and the use of C-editing to resolve the substrate H signals from cell and growth media background signals. The in-cell NMR assays are robust and have been demonstrated to provide inhibition data on test compounds. The results described here represent the first direct measurement of enzyme activity in protozoan parasite cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825731PMC
http://dx.doi.org/10.1021/acs.analchem.2c05330DOI Listing

Publication Analysis

Top Keywords

nmr-based activity
12
direct measurement
8
nucleoside ribohydrolase
8
correlation inhibition
8
enzyme activity
8
activity assay
8
activity
7
enzyme
6
measurement nucleoside
4
ribohydrolase enzyme
4

Similar Publications

Fisetin Alleviates d-Galactose-Induced Senescence in C2C12 Myoblasts: Metabolic and Gene Regulatory Mechanisms.

J Proteome Res

January 2025

Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Skeletal muscle aging poses a major threat to the health and quality of life of elderly individuals. Fisetin, a natural polyphenolic compound, exhibits various biological activities; however, its role in preventing skeletal muscle cell aging is still unclear. This study aimed to elucidate the effects of fisetin on skeletal muscle aging using a d-galactose-induced C2C12 myoblast senescence model.

View Article and Find Full Text PDF

A range of NMR techniques, including diffusion ordered spectroscopy (DOSY) were used to characterise complex micelles formed by the anti-microbial cationic surfactant cetylpyridium chloride and to quantify the degree of interaction between cetylpyridium chloride and hydroxyethyl cellulose in a variety of commercially relevant formulations as a model for the disk retention assay. This NMR-derived binding information was then compared with the results of formulation analysis by traditional disk retention assay (DRA) and anti-microbial activity assays to assess the suitability of these NMR techniques for the rapid identification of formulation components that could augment or retard antimicrobial activity DRA. NMR showed a strong ability to predict anti-microbial activity for a diverse range of formulations containing cetylpyridinium chloride (CPC).

View Article and Find Full Text PDF

Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The -phosphinic group, with hydrogen-phosphorus-carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino--phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Polycomb Repressive Complex 1 (PRC1) is associated with transcriptional silencing, and its dysregulation plays an important role in various cancers. Well-characterized PRC1 inhibitors can facilitate the exploration of PRC1 inhibition as therapeutic agents. By employing an NMR-based fragment screening approach, we have previously identified a very weak millimolar ligand , which directly binds to RING1B-BMI1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!