Staphylococcus aureus is a typical enterotoxin-producing bacterium that causes food poisoning. In the food industry, pasteurization is the most widely used technique for food decontamination. However, pre-exposure to an acidic environment might make bacteria more resistant to heat treatment, which could compromise the bactericidal effect of heat treatment and endanger food safety. In this work, the organic acid-induced cross-adaptation of S. aureus isolates to heat and the associated mechanisms were investigated. Cross-adaptation area analysis indicated that pre-exposure to organic acids induced cross-adaptation of S. aureus to heat in a strain-dependent manner. Compared with other strains, S. aureus strain J15 showed extremely high heat resistance after being stressed by acetic acid, citric acid, and lactic acid. S. aureus strains J19, J9, and J17 were found to be unable to develop cross-adaptation to heat with pre-exposure to acetic acid, citric acid, and lactic acid, respectively. Analysis of the phenotypic characteristics of the cell membrane demonstrated that the acid-heat-cross-adapted strain J15 retained cell membrane integrity and functions through enhanced NaK-ATPase and FF-ATPase activities. Cell membrane fatty acid analysis revealed that the ratio of anteiso to iso branched-chain fatty acids in the acid-heat-cross-adapted strain J15 decreased and the content of straight-chain fatty acids exhibited a 2.9 to 4.4% increase, contributing to the reduction in membrane fluidity. At the molecular level, was overexpressed with preconditioning by organic acid, and its expression was further enhanced with subsequent heat exposure. Organic acids activated the GroESL system, which participated in the heat shock response of S. aureus to the subsequent heat stress. Cross-adaptation is one of the most important phenotypes in foodborne pathogens and poses a potential risk to food safety and human health. In this work, we found that pretreatment with acetic acid, citric acid, and lactic acid could induce subsequent heat tolerance development in S. aureus. Various S. aureus strains exhibited different acid-heat cross-adaptation areas. The acid-induced cross-adaptation to heat might be attributable to membrane integrity maintenance, stabilization of the charge equilibrium to achieve a normal internal pH, and membrane fluidity reduction achieved by decreasing the ratios of anteiso to iso fatty acids. The gene, which is involved in fatty acid biosynthesis, and groES/groEL, which are related to heat shock response, contributed to the development of the acid-heat cross-adaptation phenomenon in S. aureus. The investigations of the stress cross-adaptation phenomenon in foodborne pathogens could help optimize food processing to better control S. aureus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101096 | PMC |
http://dx.doi.org/10.1128/spectrum.03832-22 | DOI Listing |
ACS Nano
January 2025
Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Heating techniques have underpinned the progress of the material and manufacturing industries. However, the explosive development of nanomaterials and micro/nanodevices has raised more requirements for the heating technique, including but not limited to high efficiency, low cost, high controllability, good usability, scalability, universality, and eco-friendliness. Carbothermal shock (CTS), a heating technique derived from traditional electrical heating, meets these requirements and is advancing at a high rate.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.
View Article and Find Full Text PDFNanoscale
January 2025
J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci., Dolejškova 3, CZ-18200, Prague 8, Czech Republic.
Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFNanoscale
January 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
An all-vanadium-based lithium-ion full battery is successfully assembled with hierarchical micro-nano yolk-shell structures VO and VO as the cathode and anode, which were obtained through a facile solvothermal method with heat treatment under different atmospheres. When used as the cathode of the lithium-ion battery, the hierarchical micro-nano yolk-shell VO demonstrated higher capacities than bulk VO, commercial LiFePO, and LiNiCoMnO cathodes at various current densities. The all-vanadium-based lithium-ion full battery shows good cycle performance at 0.
View Article and Find Full Text PDFChem Soc Rev
January 2025
School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!