The mesenteric lymph nodes (MLN) function as a barrier to systemic spread for both commensal and pathogenic bacteria in the gut. Listeria monocytogenes, a facultative intracellular foodborne pathogen, readily overcomes this barrier and spreads into the bloodstream, causing life-threatening systemic infections. We show here that intracellular replication protected L. monocytogenes from clearance by monocytes and neutrophils and promoted colonization of the small intestine-draining MLN (sMLN) but was not required for dissemination to the colon-draining MLN (cMLN). Intestinal tissue had enough free lipoate to support LplA2-dependent extracellular growth of L. monocytogenes, but exogenous lipoate in the MLN was severely limited, and so the bacteria could replicate only inside cells, where they used LplA1 to scavenge lipoate from host peptides. When foodborne infection was manipulated to allow Δ L. monocytogenes to colonize the MLN to the same extent as wild-type bacteria, the mutant was still never recovered in the spleen or liver of any animal. We found that intracellular replication in the MLN promoted actin-based motility and cell-to-cell spread of L. monocytogenes and that rapid efficient exit from the MLN was dependent. We conclude that intracellular replication of L. monocytogenes in intestinal tissues is not essential and serves primarily to amplify bacterial burdens above a critical threshold needed to efficiently colonize the cMLN. In contrast, intracellular replication in the MLN is absolutely required for further systemic spread and serves primarily to promote ActA-mediated cell-to-cell spread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112146 | PMC |
http://dx.doi.org/10.1128/iai.00064-23 | DOI Listing |
J Transl Med
December 2024
Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
Background: Mitochondrial transcription elongation factor (TEFM) is a recently discovered factor involved in mitochondrial DNA replication and transcription. Previous studies have reported that abnormal TEFM expression can disrupt the assembly of mitochondrial respiratory chain and thus mitochondrial function. However, the role of TEFM on Uterine corpus endometrial carcinoma (UCEC) progression remains unclear.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.
View Article and Find Full Text PDFSci Rep
December 2024
Institut Cochin, INSERM, CNRS, Université de Paris, 75014, Paris, France.
Viruses are dependent on cellular energy metabolism for their replication, and the drug nitazoxanide (Alinia) was shown to interfere with both processes. Nitazoxanide is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Our hypothesis was that mitochondrial uncoupling underlies the antiviral effects of nitazoxanide.
View Article and Find Full Text PDFCurr Res Microb Sci
November 2024
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
RIG-I and MDA5 are members of RIG-I-like receptors (RLRs) that detect viral RNA within the cytoplasm and subsequently initiate antiviral immune responses. Necroptosis is a form of programmed cell death (PCD) executed by mixed lineage kinase domain-like (MLKL), which, upon phosphorylation by receptor-interacting protein kinase 3 (RIPK3), causes necrotic cell death. To date, no link between RLRs and necroptosis has been observed during bacterial infection.
View Article and Find Full Text PDFDev Comp Immunol
December 2024
Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China. Electronic address:
N6-methyladenosine (mA) is one of the most prevalent modifications found in eukaryotic mRNA and has been implicated in the regulation of cell proliferation, development, invasion, apoptosis, and immunity. In this study, we first conducted a structural and evolutionary analysis of Wilms' tumour 1-associating protein (WTAP) in vertebrates, and the results showed that WTAP in vertebrates is conserved particularly in mammals and fish. We subsequently investigated the involvement of WTAP in the antiviral immune response of fish and discovered that the expression of Miichthys miiuy (mmiWTAP) decreased in response to stimulation with Siniperca chuatsi rhabdovirus (SCRV) and poly(I:C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!