A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Throughput Scanning Second-Harmonic-Generation Microscopy for Polar Materials. | LitMetric

The Materials Genome Initiative aims to discover, develop, manufacture, and deploy advanced materials at twice the speed of conventional approaches. To achieve this, high-throughput characterization is essential for the rapid screening of candidate materials. In this study, a high-throughput scanning second-harmonic-generation microscope with automatic partitioning, accurate positioning, and fast scanning is developed that can rapidly probe and screen polar materials. Using this technique, typical ferroelectrics, including periodically poled lithium niobate crystals and PbZr Ti O (PZT) thin films are first investigated, whereby the microscopic domain structures are clearly revealed. This technique is then applied to a compositional-gradient (100-x)%BaTiO -x%SrTiO film and a thickness-gradient PZT film to demonstrate its high-throughput capabilities. Since the second-harmonic-generation signal is correlated with the macroscopic remnant polarization over the probed region determined by the laser spot, it is free of artifacts arising from leakage current and electrostatic interference, while materials' symmetries and domain structures must be carefully considered in the data analysis. It is believed that this work can help promote the high-throughput development of polar materials and contribute to the Materials Genome Initiative.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202300348DOI Listing

Publication Analysis

Top Keywords

polar materials
12
high-throughput scanning
8
scanning second-harmonic-generation
8
materials genome
8
genome initiative
8
domain structures
8
materials
7
high-throughput
5
second-harmonic-generation microscopy
4
microscopy polar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!