Chronic hepatitis B virus (HBV) infection has been characterized by lack of effective adaptive immune responses which are vital for the viral clearance. However, very little is known about the dynamics of adaptive immune responses during the early phase of chronic HBV infection especially in spleen and liver. Here, we used the hydrodynamic injection (HDI) mouse model to kinetically characterize differences in the features of adaptive immunity, including the frequencies, phenotypes and function of antigen-presenting cells and T cells in the spleen, peripheral blood mononuclear cells (PBMCs) and liver, of chronic versus acute-resolving HBV replication (AR). We found that mice with AR mice and mice with chronic HBV replication (CH) mice showed early splenomegaly accompanied by T cell expansion in spleen but not in liver after HDI. Interestingly, the early and continuous increase in HBV-specific CD8+ T cells in spleen of CH mice was comparable to that in the AR mice. However, the splenic T cells of CH mice showed no activation phenotype compared with those in AR mice. Besides, increases in activated effector CD8+ T cells in PBMCs and liver at later time points were only observed in AR mice but not CH mice. CH mice also showed insufficient expansion of dendritic cells (DCs) in spleen and increased programmed death-1 expression in DCs of the liver compared to AR mice. The adoptive transfer of total splenocytes or splenic CD8+ T cells of AR mice to CH mice demonstrated that their ability to break HBV tolerance varies at different stages of HBV clearance. Moreover, the adoptive transfer of splenocytes from AR mice induce functional activation of endogenous HBV-specific CD8+ T cells of CH mice. Our results suggest that early T cell priming and expansion initially happens in the periphery after HBV antigen exposure in acute-resolving and chronic replication. The paucity of T cell activation, and subsequent migration and liver infiltration is a key feature of the adaptive immune responses during the early phase of CH, which is probably caused by the dysfunction of DCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.28670 | DOI Listing |
Adv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Vanderbilt University, Nashville, TN, United States.
Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.
View Article and Find Full Text PDFImmunol Rev
January 2025
Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.
αβ T cell receptor (TCR) recognition of peptide-MHC complexes lies at the core of adaptive immunity, balancing specificity and cross-reactivity to facilitate effective antigen discrimination. Early structural studies established basic frameworks helpful for understanding and contextualizing TCR recognition and features such as peptide specificity and MHC restriction. However, the growing TCR structural database and studies launched from structural work continue to reveal exceptions to common assumptions and simplifications derived from earlier work.
View Article and Find Full Text PDFIt is hypothesised that peripheral immune states responding to regional environmental triggers contribute to central neurodegeneration. Region-specific genetic selection pressures require this hypothesis to be assessed in an ancestry specific manner. Here we utilise genome-wide association studies and expression quantitative trait loci from African, East Asian and European ancestries to show that genes causing neurodegeneration are preferentially expressed in innate rather than adaptive immune cells, and that expression of these genes mediates the risk of neurodegenerative disease in monocytes in an ancestry-specific manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!