Fast and slow walking driven by chemical fuel.

Chem Commun (Camb)

Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068, Germany.

Published: March 2023

We demonstrate the fast forward and slow backward motion of a biped on a tetrahedral track using chemical fuel, cooperative binding and kinetic selectivity. Walking of the biped is based on its dibenzyl amine feet that bind to zinc porphyrin units and, upon protonation, to dibenzo 24-crown-8 sites affording pseudorotaxane linkages.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc00357dDOI Listing

Publication Analysis

Top Keywords

chemical fuel
8
fast slow
4
slow walking
4
walking driven
4
driven chemical
4
fuel demonstrate
4
demonstrate fast
4
fast forward
4
forward slow
4
slow backward
4

Similar Publications

A perspective on field-effect in energy and environmental catalysis.

Chem Sci

December 2024

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China

The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.

View Article and Find Full Text PDF

Methanol (CH₃OH) is a volatile, transparent, and toxic substance widely used in chemical substrates, antifreeze, and industrial applications. Ethanol (C₂H₅OH), in contrast, is commonly used in alcoholic beverages, as a fuel additive, and as an antiseptic. Differentiating between methanol and ethanol is critical due to the severe health risks associated with methanol ingestion, while ethanol is safe for consumption in moderation.

View Article and Find Full Text PDF

The current study presents a multiphysics numerical model for a micro-planar proton-conducting solid oxide fuel cell (H-SOFC). The numerical model considered an anode-supported H-SOFC with direct internal reforming (DIR) of methane. The model solves coupled nonlinear equations, including continuity, momentum, mass transfer, chemical and electrochemical reactions, and energy equations.

View Article and Find Full Text PDF

Na-Se batteries with high theoretical capacity and rich natural abundance are regarded as desirable substitutes for lithium-ion batteries in the predicament of scarce lithium resources. However, the huge volume expansion of Se and the shuttling effect of polyselenides hinder the development of Na-Se batteries. Herein, the hierarchically porous carbon encapsulated Se (Se/HPC) is successfully prepared by molten Se diffusing into the multi-scaled orthogonal channels of In-MOF derived carbon matrix.

View Article and Find Full Text PDF

Although there has been some recent interest in the proton conductivity (σ) of highly stable carboxyl metal-organic frameworks (MOFs) made of tetravalent metal ions, given their potential applications in fuel cells and electrochemical sensing, research on MOFs constructed by hafnium(IV) ions needs to be expanded significantly. Based on this, we used two common and easily prepared phenylpoly(carboxylic acid) ligands, 1,2,4-phenyltricarboxylic acid and 1,2,4,5-phenyltetracarboxylic acid, to react with hafnium tetrachloride, respectively, creating two porous hafnium(IV)-based MOFs, () and UiO-66-(COOH)-Hf (), with the same structure as UiO-66-Hf but with different numbers of free carboxylic groups. A series of stability assays revealed that the two MOFs had excellent structural rigidity, including thermal and water stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!