Metal nanoparticles have high potential in light-harvesting applications by transferring absorbed photon energy to the adsorbates. However, photoexcited plasmon-driven ultrafast dynamics of the adsorbate on metal nanoparticles have not been clearly understood. We studied ultrafast plasmon-driven processes of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on gold nanoparticle assemblies (GNAs) using time-resolved surface-enhanced impulsive stimulated Raman spectroscopy (TR-SE-ISRS). After photoexciting the localized surface plasmon resonance (LSPR) band of the GNAs, we measured femtosecond time-resolved surface-enhanced Raman spectra of the adsorbate, which exhibited transient bleach in the Raman signal and following biphasic recovery that proceeds on the time scale of a few tens of picoseconds. The TR-SE-ISRS data were analyzed with singular value decomposition, and the obtained species-associated Raman spectra indicated that photoexcitation of the LSPR band alters chemical interaction between BPE and the GNAs on an ultrafast time scale; initial steady-state BPE is recovered through a precursor state that has weaker interaction with the GNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042161PMC
http://dx.doi.org/10.1021/acs.jpclett.2c03813DOI Listing

Publication Analysis

Top Keywords

time-resolved surface-enhanced
12
photoexcited plasmon-driven
8
plasmon-driven ultrafast
8
ultrafast dynamics
8
dynamics adsorbate
8
femtosecond time-resolved
8
raman spectroscopy
8
metal nanoparticles
8
lspr band
8
raman spectra
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!