The effect of potassium tellurite concentration in a chromogenic agar medium on the detection of tellurite-resistant "top seven" Shiga toxin-producing Escherichia coli (STEC) in beef was evaluated. Samples of ground beef were inoculated with tellurite-resistant STEC O26, O45, O103, O111, O121, O145, or O157 strains at geometric mean (±standard error of the mean) levels of 0, 49 (±1), 490 (±1), or 4900 (±1) CFU/10 g and enriched 1:10 (90 mL) in EC broth (40°C for 6 h). Following enrichment, aliquots of broth culture were treated by immunomagnetic separation with one of three pools of beads against STEC serogroups; pool I: O26, O45, and O121; pool II: O103, O111, and O145; and pool III: O157. After immunomagnetic separation, 50 μL of washed bead suspensions in buffered peptone water was spiral plated onto a modified Possé medium containing 0.5, 1.0, or 1.5 mg/L potassium tellurite, and incubated at 37°C for 18 h. Up to four isolated colonies were picked from each spiral plate based on expected colony phenotypes for STEC, and isolate identity was confirmed with an 11-plex PCR assay targeting the O serogroups and virulence genes. Overall, across all inoculum levels and strains, modified Possé media containing 0.5, 1.0, or 1.5 mg/L potassium tellurite each had a positive predictive value of 100%, and medium containing 0.5 mg/L potassium tellurite had numerically the highest sensitivity (100%) and negative predictive value (100%), which was significantly different from 1.5 mg/L (92.9% and 40.0%, respectively; P < 0.05). Similarly, there was an inverse relationship between potassium tellurite concentration and analytical specificity (number of colonies tested that were STEC-positive): 0.5 (1463 of 1482; 98.7%), 1.0 (1356 of 1411; 96.1%), and 1.5 mg/L (1187 of 1278; 92.9%; P < 0.05). These results suggest that 0.5 mg/L gives better performance than 1.0 or 1.5 mg/L of potassium tellurite in Possé medium for isolation of tellurite-resistant "top seven" STEC from ground beef.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jfp.2022.11.009 | DOI Listing |
Appl Environ Microbiol
June 2024
Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
Indian J Pathol Microbiol
April 2024
Department of Microbiology, Bharati Vidyapeeth (Deemed to be University), Medical College and Hospital, Sangli, Maharashtra, India.
Introduction: Diphtheria is an infectious disease caused by gram-positive bacilli C. diphtheriae involving nasal, pharyngeal, tonsillar, or laryngeal mucus membranes. The mortality rate is as high as 20%, with India contributing almost 78% of the world incidence.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2024
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
Pyrroloquinoline quinone (PQQ) is a natural antioxidant with diverse applications in food and pharmaceutical industries. A lot of effort has been devoted toward the discovery of PQQ high-producing microbial species and characterization of biosynthesis, but it is still challenging to achieve a high PQQ yield. In this study, a combined strategy of random mutagenesis and adaptive laboratory evolution (ALE) with fermentation optimization was applied to improve PQQ production in Hyphomicrobium denitrificans H4-45.
View Article and Find Full Text PDFFoods
December 2023
International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
Multiplex assays implementing DNA-based methods have been demonstrated as suitable alternatives to culture-based microbiological methods; however, in most cases, they still require a suitable enrichment step. Finding suitable enrichment conditions for different bacteria may result in challenges. In the present study, a novel selective broth named MSB (mTA10 selective broth) was formulated for the simultaneous recovery of spp.
View Article and Find Full Text PDFJ Microorg Control
November 2023
Bacteriological testing section, BML Inc.
For clinical diagnosis of enterohemorrhagic Escherichia coli (EHEC), it needs to capture viable EHEC cells from stool sample in the view of medical fee points. However, there is no comprehensive solution for the detection of viable EHEC cells since there are wide variety of serotype and susceptibility against potassium tellurite which is commonly used for selective agent in selective medium for EHEC. In these background, EHEC Clear-HT System (EHEC-CHT), a novel effective chromogenic medium system for screening comprehensive viable EHEC, was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!