Frozen berries have been repeatedly linked to acute gastroenteritis caused by norovirus, the most common cause of foodborne illness in the United States. Many guidelines recommend that frozen berries be microwaved for at least 2 min, but it is unclear if this thermal treatment is effective at inactivating norovirus. The objective of this study was to model the effect of microwave heating at varying power levels on the survival of bacteriophage MS2, a norovirus surrogate, when inoculated onto frozen strawberries. Bacteriophage MS2 was inoculated onto the surface of frozen strawberries with a starting concentration of approximately 10 log PFU/g. Samples (either 3 or 5 whole strawberries) were heated in a 1300-Watt domestic research microwave oven (frequency of 2450 MHz) at power levels of 30, 50, 70, and 100% (full power), for times ranging from 15 to 300 s to determine inactivation. Temperatures at berry surfaces were monitored during heating using fiberoptic thermometry. All experiments were conducted in triplicate. The primary model for thermal inactivation was a log-linear model of logN vs. time. The secondary model was for a D-value decreasing linearly with temperature and an added term that was path-dependent on the thermal history. Parameters in the model were estimated using dynamic temperature history at the surface of the berry, via nonlinear regression using all data simultaneously. The root mean square error was ∼0.5 PFU/g out of a total 6-log reduction. Log reductions of 1.1 ± 0.4, 1.5 ± 0.5, 3.1 ± 0.1, and 3.8 ± 0.2 log PFU/g were observed for 30, 50, 70, and 100% microwave power levels when three berries were heated for 60 s. D-values were 21.4 ± 1.95 s and 10.6 ± 1.1 s at 10 and 60°C, respectively. This work demonstrates an approach to estimate inactivation parameters for viruses from dynamic temperature data during microwave heating. These findings will be useful in predicting the safety effect of microwave heating of berries in the home or food service.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jfp.2022.100032 | DOI Listing |
Int J Nanomedicine
January 2025
Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China.
Introduction: The anti-cancer properties of zinc oxide-doped carbon dots (CDs/ZnO) in inhibiting triple-negative breast cancer (TNBC) progression merit more investigation.
Methods: With citric acid as the carbon source, urea applied as the nitrogen source, and zinc oxide (ZnO) used as a reactive dopant, CDs/ZnO were synthesized by microwave heating in the current study, followed by the characterization and biocompatibility assessments. Subsequently, the anti-cancer capabilities of CDs/ZnO against TNBC progression were evaluated by various biochemical and molecular techniques, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, metabolome, and transcriptome assays of MDA-MB-231 cells.
ACS Omega
December 2024
Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
We herein report a microwave-assisted Buchwald-Hartwig double amination reaction to synthesize potential thermally activated delayed fluorescence compounds, forming C(sp)-N bonds between donor and acceptor units. Our approach reduces reaction times from 24 h to 10-30 min and achieves moderate to excellent yields, outperforming conventional heating methods. The method is compatible with various aryl bromides and secondary amines, including phenoxazine, phenothiazine, acridine, and carbazole.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan.
Purpose: The emulsification of silicone oil (SO) remains poorly understood. In the present study, we investigated the physical properties of unused pharmaceutical SO samples under various conditions. Moreover, clinical correlations with the patients' SO samples were assessed.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of Chemical Engineering, University of Guilan, Rasht, Iran.
Background: Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.
Objective: The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.
Sci Rep
December 2024
Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland.
The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!