AI Article Synopsis

  • Mob4 is a conserved protein important for cell division and neural development, part of the STRIPAK complex involved in key cellular processes.
  • Despite its significance, the function of Mob4 in vertebrates is not well understood, with more clarity seen in Drosophila studies.
  • Research on zebrafish reveals that reducing Mob4 during embryonic development restricts neuronal cell divisions but does not significantly impact cell death (apoptosis), indicating its role in neurodevelopment.

Article Abstract

Mob4 is an essential evolutionary conserved protein shown to play roles in cell division and neural development. Mob4 is a core component of the macromolecular STRIPAK complex involved in various critical cellular processes, from cell division to signal transduction pathways. However, Mob4 remains relatively poorly understood. Although the consequences of eliminating Mob4 function in Drosophila are described, its function in vertebrate development remains largely unknown. Here we show that knockdown and knockout of Mob4 during zebrafish embryogenesis limits neuronal cell divisions but has little effect on apoptosis, thus arguing a role for mob4 in neurodevelopment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006847PMC
http://dx.doi.org/10.17912/micropub.biology.000762DOI Listing

Publication Analysis

Top Keywords

cell division
8
mob4
7
mob4 required
4
required neurodevelopment
4
neurodevelopment zebrafish
4
zebrafish mob4
4
mob4 essential
4
essential evolutionary
4
evolutionary conserved
4
conserved protein
4

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture.

In Vitro Cell Dev Biol Anim

December 2024

Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INRLGII), Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico.

Osteoarthritis (OA) is a chronic degenerative disease characterized by the progressive loss of articular cartilage. The role of cigarette smoke (CS) in OA is debated, with some studies suggesting a protective effect while others indicate it may pose a risk. Our preliminary findings suggest a link between smoking in young adults and severe knee OA, though the extent of this contribution is unclear.

View Article and Find Full Text PDF

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.

View Article and Find Full Text PDF

Imaging phenotype reveals that disulfirams induce protein insolubility in the mitochondrial matrix.

Sci Rep

December 2024

Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.

The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!