A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The PARP inhibitor Rucaparib synergizes with radiation to attenuate atypical teratoid rhabdoid tumor growth. | LitMetric

Background: Atypical teratoid rhabdoid tumors (ATRT) are highly aggressive pediatric brain tumors. The available treatments rely on toxic chemotherapy and radiotherapy, which themselves can cause poor outcomes in young patients. Poly (ADP-ribose) polymerases (PARP), multifunctional enzymes which play an important role in DNA damage repair and genome stability have emerged as a new target in cancer therapy. An FDA-approved drug screen revealed that Rucaparib, a PARP inhibitor, is important for ATRT cell growth. This study aims to investigate the effect of Rucaparib treatment in ATRT.

Methods: This study utilized cell viability, colony formation, flow cytometry, western blot, immunofluorescence, and immunohistochemistry assays to investigate Rucaparib's effectiveness in BT16 and MAF737 ATRT cell lines. In vivo, intracranial orthotopic xenograft model of ATRT was used. BT16 cell line was transduced with a luciferase-expressing vector and injected into the cerebellum of athymic nude mice. Animals were treated with Rucaparib by oral gavaging and irradiated with 2 Gy of radiation for 3 consecutive days. Tumor growth was monitored using In Vivo Imaging System.

Results: Rucaparib treatment decreased ATRT cell growth, inhibited clonogenic potential of ATRT cells, induced cell cycle arrest and apoptosis, and led to DNA damage accumulation as shown by increased expression of γH2AX. In vivo, Rucaparib treatment decreased tumor growth, sensitized ATRT cells to radiation and significantly increased mice survival.

Conclusion: We demonstrated that Rucaparib has potential to be a new therapeutic strategy for ATRT as seen by its ability to decrease ATRT tumor growth both in vitro and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007910PMC
http://dx.doi.org/10.1093/noajnl/vdad010DOI Listing

Publication Analysis

Top Keywords

tumor growth
16
atrt cell
12
rucaparib treatment
12
atrt
9
parp inhibitor
8
atypical teratoid
8
teratoid rhabdoid
8
dna damage
8
cell growth
8
treatment decreased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!