Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron (Fe) and zinc (Zn) nutrient enrichment of staple crops through biofortification can contribute to alleviating micronutrient deficiency in sub-Saharan Africa. A line × tester mating design was used to determine the general combining ability (GCA), specific combining ability (SCA) and heterosis for grain yield, iron, Zn and phytic concentration of six lines crossed with three testers. Lines and testers were selected for high, intermediate and low mineral content. The F1 hybrids and parental lines were evaluated under low nitrogen (N) and optimum conditions across four environments over two seasons. Under low N conditions, Fe and Zn concentration in grain, and grain yield of genotypes were reduced by 9%, 9%, and 59%, respectively. However, phytic acid concentration in grain was increased by 10% under low N conditions. Both additive and non-additive gene effects were important in controlling Fe, Zn and phytic acid concentration in grain and grain yield of maize under both N conditions. The preponderance of GCA effects indicates the importance of additive gene effects in the inheritance of grain yield. Line GCA effects were more sensitive to N conditions across the environments than the tester GCA. High and significant positive SCA effects for grain yield, Fe and Zn content under low N conditions, would be a good indicator of possible heterosis in these traits. Hybrid CBY101 LM-1600 × CBY358 LM-1857 had high and significant positive SCA for grain yield under low N conditions and is a promising candidate for production in low N environments. CBY358 LM-1857 (tester) and CBY102 LM-1601 (line) are a good general combiners for Fe, Zn and GY can be used as parents in future maize hybrid breeding programs to develop high-yielding maize genotypes with high Fe and Zn content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006741 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e14177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!