The use of solar energy is considered a potential strategy for the production of electrical energy through thermal heat sources. This article portrays a study framed to be energetic, economic, and environmental fields. This study was carried out in two thermal configurations: the Regenerative Rankine Cycle (RORC) and the Simple Organic Rankine Cycle (SORC), which use solar energy to supply electrical power to a building. The thermodynamic and economic models were proposed for each subsystem of the thermal process, allowing hourly simulations to know the economic indicators such as the payback period (PBP), the levelized cost of energy (LCOE), the specific investment cost (SIC), and the initial investment cost ( ). The effect of operational variables such as the pressure ratio (rp), the evaporator pinch point temperature (Ap), the condensation pinch point temperature (Tcond), and the solar collector area (Ac) on the Relative Annual Benefit (RAB) were studied. Finally, the Particle Swarm Optimization (PSO) algorithm was implemented to optimize the economic indicators and the environmental impact of the thermal configurations. Results showed that the RORC configuration presented a better performance in terms of generation, purchase, and hourly sale of energy. However, in terms of RAB, the SORC (39,833 USD/year) showed better results in contrast to the RORC (39,604 USD/year) for an evaporator pinch point temperature of 35 °C. Finally, the application of the PSO optimization algorithm allowed the reduction of the LCOE (11.64%), SIC (11.67%), and PBP (11.81%) thermo-economic indicators from the base condition for the SORC, and the reductions obtained in the RORC were LCOE (18.11%), SIC (10.67%), and PBP (11.11%). However, the decrease in environmental Impact for both systems was less than 1% as a consequence of the high contribution of thermal oil in the construction phase of the system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006544 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e13697 | DOI Listing |
Heliyon
January 2025
North China Electric Power University, Department of Power Engineering, China.
In the context of global efforts toward energy transition and carbon neutrality, thermal integrated pumped thermal energy storage (TIPTES) systems, especially those utilizing low-grade heat sources, have garnered significant attention due to their large capacity, flexibility, and environmental advantages. This paper explores a TIPTES system that harnesses industrial waste heat as a heat source. The system's heat pump (HP) subcycle and Organic Rankine Cycle (ORC) subcycle are equipped with regenerators to optimize system configuration and enhance efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical & Electronical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Materials (Basel)
November 2024
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland.
The urgent need for environmentally sustainable cooling technologies, driven by global regulatory constraints, has intensified the search for natural refrigerants with low global warming potential. This study evaluates the potential of natural refrigerants, specifically butane and isobutane, in advanced single- and dual-fluid Organic Rankine Cycle-Vapor Compression Cycle (ORC-VCC) systems to enhance energy efficiency and environmental sustainability. Using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) within a multi-objective framework, the optimization maximizes key performance metrics such as coefficient of performance (COP) and cooling power, while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method enables a refined ranking of optimal solutions.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.
Integrating solar energy systems is an essential measure in advancing worldwide sustainability objectives and offers a sustainable, environmentally friendly approach to reducing greenhouse gas emissions and pollutants. To this direction, the proposed system integrating solar tower collector, supercritical CO, organic Rankine cycle, and single effect absorption refrigeration cycles shows potential as an efficient and sustainable solution for meeting energy and cooling demands. A detailed thermodynamic evaluation has been performed to gain valuable understanding of the energy and exergy performance, enabling the assessment of thermal and exergy efficiencies, exergy destructions, and heat losses.
View Article and Find Full Text PDFHeliyon
December 2024
MOBILERS Team, Sivas Cumhuriyet University, 58350, Sivas, Turkey.
This review examines Organic Rankine Cycle (ORC) technology, which generates electricity using organic fluids at low temperature ranges. To enhance the efficiency of basic ORC systems, they are often adapted into Regenerative Organic Rankine Cycle (R-ORC) systems. The review highlights the dimensions of economic, energy, and exergy efficiency, which are critical for practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!