AI Article Synopsis

  • hiPSC-CMs are being used to model arrhythmogenic cardiomyopathy (ACM), a genetic heart disease with varying symptoms due to incomplete penetrance and variable expressivity.
  • Six hiPSC lines were created from blood samples of ACM patients, asymptomatic carriers, and a healthy control, with detailed analysis revealing significant molecular and functional differences among these cell lines.
  • The study suggests that hiPSC-CMs effectively demonstrate how ACM can manifest differently in individuals, making them a valuable tool for researching the disease's incomplete penetrance.

Article Abstract

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are commonly used to model arrhythmogenic cardiomyopathy (ACM), a heritable cardiac disease characterized by severe ventricular arrhythmias, fibrofatty myocardial replacement and progressive ventricular dysfunction. Although ACM is inherited as an autosomal dominant disease, incomplete penetrance and variable expressivity are extremely common, resulting in different clinical manifestations. Here, we propose hiPSC-CMs as a powerful in vitro model to study incomplete penetrance in ACM. Six hiPSC lines were generated from blood samples of three ACM patients carrying a heterozygous deletion of exon 4 in the gene, two asymptomatic (ASY) carriers of the same mutation and one healthy control (CTR), all belonging to the same family. Whole exome sequencing was performed in all family members and hiPSC-CMs were examined by ddPCR, western blot, Wes™ immunoassay system, patch clamp, immunofluorescence and RNASeq. Our results show molecular and functional differences between ACM and ASY hiPSC-CMs, including a higher amount of mutated mRNA, a lower expression of the connexin-43 protein, a lower overall density of sodium current, a higher intracellular lipid accumulation and sarcomere disorganization in ACM compared to ASY hiPSC-CMs. Differentially expressed genes were also found, supporting a predisposition for a fatty phenotype in ACM hiPSC-CMs. These data indicate that hiPSC-CMs are a suitable model to study incomplete penetrance in ACM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006475PMC
http://dx.doi.org/10.1016/j.csbj.2023.02.029DOI Listing

Publication Analysis

Top Keywords

incomplete penetrance
16
arrhythmogenic cardiomyopathy
8
human induced
8
induced pluripotent
8
pluripotent stem
8
stem cell
8
cell derived
8
derived cardiomyocytes
8
acm
8
model study
8

Similar Publications

Background: Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder caused by variants in the gene. It is associated with periodic paralysis, dysmorphic features and cardiac arrhythmias. The syndrome exhibits incomplete penetrance, leading to a broad spectrum of clinical manifestations, making diagnosis challenging.

View Article and Find Full Text PDF

Beyond the "Dominant" and "Recessive" Patterns of Inheritance.

Int J Mol Sci

December 2024

Laboratory of Medical Biology-Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece.

This study aimed to investigate whether genes with different modes of inheritance differ in the presence of promoter-enriched CGI loci. For each autosomal chromosome, the author searched for variations in the total number of diseases' phenotypes with autosomal dominant (AD) and recessive (AR) inheritance for a list of promoter-poor CGI (CGI-) and promoter-enriched CGI (CGI+) genes using the OMIM database. Then, the CGI- and CGI+ genes displaying random allelic or bi-allelic expression were examined.

View Article and Find Full Text PDF

: The gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features.

View Article and Find Full Text PDF

Brugada syndrome (BrS) is a genetic channelopathy that may predispose to ventricular arrhythmia. It is inherited as an autosomal dominant pattern with incomplete penetrance. Fever can unmask Brugada syndrome in children who have a genetic predisposition.

View Article and Find Full Text PDF

Monoallelic expression can govern penetrance of inborn errors of immunity.

Nature

January 2025

Columbia Center for Genetic Errors of Immunity, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.

Article Synopsis
  • Inborn errors of immunity (IEIs) are genetic disorders that increase the risk of infections, autoimmunity, and other health issues, and often show incomplete penetrance despite being caused by single gene mutations.
  • This study examines how autosomal random monoallelic expression (aRMAE)—where only one allele of a gene is actively expressed—contributes to the variability in disease outcomes among individuals within families with IEIs.
  • The findings reveal that specific gene expression patterns related to aRMAE can influence clinical phenotypes, suggesting that understanding both genetic and expression variations is crucial for analyzing the impact of monogenic disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!