Introduction: Little is known about the protective effects of butylphthalide on cerebral ischemia-reperfusion injury. This study aims to investigate the impact on the second mitochondrial-derived activator of Caspases (Smac) and X-linked inhibitor of apoptosis protein (XIAP) expression in the ischemic semidark area using a rat model of carotid artery stenosis.

Methods: Thirty Sprague-Dawley rats were randomly divided into the sham-operated group, carotid stenosis model controls, low-dose (20 mg/kg), medium-dose (40 mg/kg), and high-dose (80 mg/kg) butylphthalide groups. The neurological function was scored by the balance beam test (BBT). The morphological changes of brain tissue were detected by Hematoxylin-eosin (HE) staining, with apoptosis detected by Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) staining. Smac and XIAP protein expression were detected by immunohistochemistry (IHC). The expressions of Smac and XIAP mRNA were detected by real-time quantitative polymerase chain reaction (RT-qPCR).

Results: HE showed that neuronal loss, nuclear consolidation, and vacuolar degeneration were significantly reduced in the medium and high-dose butylphthalide groups compared with the model controls. The BBT scores and apoptotic index were significantly lower in the medium and high doses of butylphthalide compared with the model controls. RT-qPCR and IHC showed that Smac, XIAP mRNA and protein expressions in the ischemic hemispheric region were significantly reduced in low, medium, and high doses of butylphthalide compared with the model controls (P < 0.05), showing some concentration effect.

Conclusions: Butylphthalide can significantly reduce Smac and XIAP mRNA and protein expression, inhibit neuronal apoptosis induced by ischemia-reperfusion injury in rats with carotid stenosis, and exert neuroprotective effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2022.11.055DOI Listing

Publication Analysis

Top Keywords

smac xiap
16
model controls
16
compared model
12
xiap expression
8
butylphthalide groups
8
xiap mrna
8
medium high
8
high doses
8
doses butylphthalide
8
butylphthalide compared
8

Similar Publications

Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling.

Curr Issues Mol Biol

December 2024

Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.

Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.

View Article and Find Full Text PDF

Targeting protein-protein interactions in drug discovery: Modulators approved or in clinical trials for cancer treatment.

Pharmacol Res

January 2025

Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain; Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain. Electronic address:

Protein-protein interactions (PPIs) form complex cellular networks fundamental to many key biological processes, including signal transduction, cell proliferation and DNA repair. In consequence, their perturbation is often associated with many human diseases. Targeting PPIs offers a promising approach in drug discovery and ongoing advancements in this field hold the potential to provide highly specific therapies for a wide range of complex diseases.

View Article and Find Full Text PDF

Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury.

Mol Cell Neurosci

December 2024

Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye.

Brain injury develops from a complex series of pathophysiological phases, resulting in acute necrotic or delayed apoptotic cell death after traumatic brain injury (TBI). Inhibition of apoptotic cell death is critical for the treatment of acute neurodegenerative disorders, such as TBI. Here, we investigated the role of phosphodiesterase 10A (PDE10A) in the development of neuronal injury, particularly in apoptotic cell death.

View Article and Find Full Text PDF

Lam., commonly known as Malabar nutmeg or false nutmeg, is used in traditional medicine and as a spice. Our exploration focuses on malabaricones, a distinct group of secondary metabolites isolated from the fruit rind of .

View Article and Find Full Text PDF

Involvement of K3.4 Channel in Parkinson's Disease: A Key Player in the Control of Midbrain and Striatum Differential Vulnerability during Disease Progression?

Antioxidants (Basel)

August 2024

Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy.

Parkinson's disease (PD), the second most common neurodegenerative disease in the elderly, is characterized by selective loss of dopaminergic neurons and accumulation of α-synuclein (α-syn), mitochondrial dysfunction, Ca dyshomeostasis, and neuroinflammation. Since current treatments for PD merely address symptoms, there is an urgent need to identify the PD pathophysiological mechanisms to develop better therapies. Increasing evidence has identified K3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!