Macrophages play a critical role in the immune homeostasis and host defense against invading pathogens. However, uncontrolled activation of inflammatory macrophages leads to tissue injury and even fuels autoimmunity. Hence the molecular mechanisms underlying macrophage activation need to be further elucidated. The effects of epigenetic modifications on the function of immune cells draw increasing attention. Here, we demonstrated that lysine-specific demethylase 5B (KDM5B), a classical transcriptional repressor in stem cell development and cancer, was required for the full activation of NF-κB signaling cascade and pro-inflammatory cytokine production in macrophages. KDM5B deficiency or inhibitor treatment protected mice from immunologic injury in both collagen-induced arthritis (CIA) model and endotoxin shock model. Genome-wide analysis of KDM5B-binding peaks identified that KDM5B was selectively recruited to the promoter of Nfkbia, the gene encoding IκBα, in activated macrophages. KDM5B mediated the H3K4me3 modification erasing and decreased chromatin accessibility of Nfkbia gene locus, coordinating the elaborate suppression of IκBα expression and the enhanced NF-κB-mediated macrophage activation. Our finding identifies the indispensable role of KDM5B in macrophage-mediated inflammatory responses and provides a candidate therapeutic target for autoimmune and inflammatory disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154333PMC
http://dx.doi.org/10.1038/s41418-023-01136-xDOI Listing

Publication Analysis

Top Keywords

demethylase kdm5b
8
macrophage-mediated inflammatory
8
inflammatory responses
8
macrophage activation
8
macrophages kdm5b
8
nfkbia gene
8
kdm5b
6
histone demethylase
4
kdm5b licenses
4
licenses macrophage-mediated
4

Similar Publications

H3K4me3 Genome-Wide Distribution and Transcriptional Regulation of Transposable Elements by RNA Pol2 Deposition.

Int J Mol Sci

December 2024

Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide enrichment of H3K4me3 during early embryo development and embryonic stem cells (ESCs) in both sheep and mice.

View Article and Find Full Text PDF

Introduction: Whether repeated inhalation of sevoflurane during the neonatal period causes long-term learning and memory impairments in humans is unclear. Some recent investigations have indicated that general anesthesia drugs affect histone methylation modification and may further affect learning and memory ability. This study aimed to explore the role and mechanism of histone methylation in long-term cognitive dysfunction caused by repeated inhalation of sevoflurane during the neonatal period.

View Article and Find Full Text PDF

Epigenetic modifications play an important role in disturbed flow (d-flow) induced atherosclerotic plaque formation. By analysing a scRNA-seq dataset of the left carotid artery (LCA) under d-flow conditions, we found that Jarid1b (KDM5B) was upregulated primarily in a subcluster of endothelial cells in response to d-flow stimulation. We therefore investigated the mechanism of KDM5B expression and the role of KDM5B in endothelial cell.

View Article and Find Full Text PDF

ZBTB7A is a modulator of KDM5-driven transcriptional networks in basal breast cancer.

Cell Rep

December 2024

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA. Electronic address:

Article Synopsis
  • The study identifies KDM5A as an important oncogene in basal breast cancer, showing that its amplification and overexpression can be targeted to suppress cancer cell growth.
  • CRISPR knockout screens reveal that deleting the ZBTB7A transcription factor makes cells more sensitive to KDM5 inhibition, while the deletion of RHO-GTPases provides resistance.
  • The research highlights the role of ZBTB7A and KDM5A/B in regulating gene expression, particularly regarding NF-κB targets, and links high ZBTB7A levels to poorer treatment responses in triple-negative breast cancer.
View Article and Find Full Text PDF

PPARγ coactivator-1α (PGC1α), as a co-activator, is known to optimize the action of several transcription factors, including androgen receptor (AR). However, the precise functions of PGC1α in prostate cancer, particularly those via the non-AR pathways, remain poorly understood. Meanwhile, our bioinformatics search suggested that PGC1α could be a direct downstream target of lysine-specific demethylase 5B (KDM5B/JARID1B/PLU1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!