Macrophages play a critical role in the immune homeostasis and host defense against invading pathogens. However, uncontrolled activation of inflammatory macrophages leads to tissue injury and even fuels autoimmunity. Hence the molecular mechanisms underlying macrophage activation need to be further elucidated. The effects of epigenetic modifications on the function of immune cells draw increasing attention. Here, we demonstrated that lysine-specific demethylase 5B (KDM5B), a classical transcriptional repressor in stem cell development and cancer, was required for the full activation of NF-κB signaling cascade and pro-inflammatory cytokine production in macrophages. KDM5B deficiency or inhibitor treatment protected mice from immunologic injury in both collagen-induced arthritis (CIA) model and endotoxin shock model. Genome-wide analysis of KDM5B-binding peaks identified that KDM5B was selectively recruited to the promoter of Nfkbia, the gene encoding IκBα, in activated macrophages. KDM5B mediated the H3K4me3 modification erasing and decreased chromatin accessibility of Nfkbia gene locus, coordinating the elaborate suppression of IκBα expression and the enhanced NF-κB-mediated macrophage activation. Our finding identifies the indispensable role of KDM5B in macrophage-mediated inflammatory responses and provides a candidate therapeutic target for autoimmune and inflammatory disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154333 | PMC |
http://dx.doi.org/10.1038/s41418-023-01136-x | DOI Listing |
Int J Mol Sci
December 2024
Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide enrichment of H3K4me3 during early embryo development and embryonic stem cells (ESCs) in both sheep and mice.
View Article and Find Full Text PDFFront Mol Neurosci
November 2024
School of Anesthesiology, Zunyi Medical University, Zunyi, China.
Introduction: Whether repeated inhalation of sevoflurane during the neonatal period causes long-term learning and memory impairments in humans is unclear. Some recent investigations have indicated that general anesthesia drugs affect histone methylation modification and may further affect learning and memory ability. This study aimed to explore the role and mechanism of histone methylation in long-term cognitive dysfunction caused by repeated inhalation of sevoflurane during the neonatal period.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Cyrus Tang Medical Institute, Soochow University, Suzhou, China.
Epigenetic modifications play an important role in disturbed flow (d-flow) induced atherosclerotic plaque formation. By analysing a scRNA-seq dataset of the left carotid artery (LCA) under d-flow conditions, we found that Jarid1b (KDM5B) was upregulated primarily in a subcluster of endothelial cells in response to d-flow stimulation. We therefore investigated the mechanism of KDM5B expression and the role of KDM5B in endothelial cell.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA. Electronic address:
Am J Cancer Res
September 2024
Department of Pathology and Laboratory Medicine, University of Rochester Medical Center Rochester, NY 14642, USA.
PPARγ coactivator-1α (PGC1α), as a co-activator, is known to optimize the action of several transcription factors, including androgen receptor (AR). However, the precise functions of PGC1α in prostate cancer, particularly those via the non-AR pathways, remain poorly understood. Meanwhile, our bioinformatics search suggested that PGC1α could be a direct downstream target of lysine-specific demethylase 5B (KDM5B/JARID1B/PLU1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!