New insights into APCVD grown monolayer MoS using time-domain terahertz spectroscopy.

Sci Rep

Photonic Materials Metrology Sub Division, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India.

Published: March 2023

In modern era, wireless communications at ultrafast speed are need of the hour and search for its solution through cutting edge sciences is a new perspective. To address this issue, the data rates in order of terabits per second (TBPS) could be a key step for the realization of emerging sixth generation (6G) networks utilizing terahertz (THz) frequency regime. In this context, new class of transition metal dichalcogenides (TMDs) have been introduced as potential candidates for future generation wireless THz technology. Herein, a strategy has been adopted to synthesize high-quality monolayer of molybdenum di-sulfide (MoS) using indigenously developed atmospheric pressure chemical vapor deposition (APCVD) set-up. Further, the time-domain transmission and sheet conductivity were studied as well as a plausible mechanism of terahertz response for monolayer MoS has been proposed and compared with bulk MoS. Hence, the obtained results set a stepping stone to employ the monolayer MoS as potential quantum materials benefitting the next generation terahertz communication devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011412PMC
http://dx.doi.org/10.1038/s41598-023-31102-zDOI Listing

Publication Analysis

Top Keywords

monolayer mos
12
mos
5
insights apcvd
4
apcvd grown
4
monolayer
4
grown monolayer
4
mos time-domain
4
terahertz
4
time-domain terahertz
4
terahertz spectroscopy
4

Similar Publications

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

December 2024

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

Formation and Magnetic Properties of Transition Metal Atomic Chains on Monolayer MoS Grain Boundaries: A First-Principles Study.

Nanomaterials (Basel)

December 2024

Key Laboratory for Nonferrous Materials (MOE), School of Materials Science and Engineering, Central South University, Changsha 410083, China.

Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction.

View Article and Find Full Text PDF

Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order Raman mode of monolayer (1L) MoS transferred onto a flexible metallic nanotip array.

View Article and Find Full Text PDF

The decoupling of electronic states between metals and semiconductors through controlled construction of artificial van der Waals (vdW) heterojunctions enables tailored Schottky barriers. However, the interfacial chemistry, especially involving solid-liquid interfaces, remains unexplored. Here, first principles calculations reveal unexpected strong Fermi-level pinning in various metal/MoS vdW heterojunctions with intercalated ice-like water bilayers.

View Article and Find Full Text PDF

Layer-number-dependent photoswitchability in 2D MoS-diarylethene hybrids.

Nanoscale

December 2024

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

Molybdenum disulfide (MoS) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS flakes and elucidate layer-number-dependent charge transfer behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!