A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unique fiber phenotype composition and metabolic properties of the stapedius and tensor tympani muscles in the human middle ear. | LitMetric

The middle ear muscles have vital roles, yet their precise function in hearing and protection remains unclear. To better understand the function of these muscles in humans, the morphology, fiber composition, and metabolic properties of nine tensor tympani and eight stapedius muscles were analyzed with immunohistochemical, enzyme-histochemical, biochemical, and morphometric techniques. Human orofacial, jaw, extraocular, and limb muscles were used as references. The immunohistochemical analysis showed that the stapedius and tensor tympani muscles were markedly dominated by fibers expressing fast contracting myosin heavy chain MyHC-2A and MyHC-2X (79 ± 6% vs. 86 ± 9%, respectively, p = 0.04). In fact, the middle ear muscles had one of the highest proportions of MyHC-2 fibers ever reported for human muscles. Interestingly, the biochemical analysis revealed a MyHC isoform of unknown identity in both the stapedius and tensor tympani muscles. Muscle fibers containing two or more MyHC isoforms were relatively frequently observed in both muscles. A proportion of these hybrid fibers expressed a developmental MyHC isoform that is normally absent in adult human limb muscles. The middle ear muscles differed from orofacial, jaw, and limb muscles by having significantly smaller fibers (220 vs. 360 μm , respectively) and significantly higher variability in fiber size, capillarization per fiber area, mitochondrial oxidative activity, and density of nerve fascicles. Muscle spindles were observed in the tensor tympani muscle but not in the stapedius muscle. We conclude that the middle ear muscles have a highly specialized muscle morphology, fiber composition, and metabolic properties that generally showed more similarities to orofacial than jaw and limb muscles. Although the muscle fiber characteristics in the tensor tympani and stapedius muscles suggest a capacity for fast, fine-tuned, and sustainable contractions, their difference in proprioceptive control reflects different functions in hearing and protection of the inner ear.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273355PMC
http://dx.doi.org/10.1111/joa.13861DOI Listing

Publication Analysis

Top Keywords

tensor tympani
24
middle ear
20
muscles
16
ear muscles
16
limb muscles
16
composition metabolic
12
metabolic properties
12
stapedius tensor
12
tympani muscles
12
orofacial jaw
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!