A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Specific protection mechanism of oligosaccharides on liposomes during freeze-drying. | LitMetric

Specific protection mechanism of oligosaccharides on liposomes during freeze-drying.

Food Res Int

Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China. Electronic address:

Published: April 2023

Liposomes have been received much attention during the past decades as bioactive compounds carriers in food field. However, the application of liposomes is extremely limited by the structural instability during processing such as freeze-drying. In addition, the protection mechanism of lyoprotectant for liposomes during freeze-drying remains controversial. In this study, lactose, fructooligosaccharide, inulin and sucrose were used as lyoprotectants for liposomes and the physicochemical properties, structural stability and freeze-drying protection mechanism were explored. The addition of oligosaccharides could significantly suppress the changes in size and zeta potential, and the amorphous state of liposomes was negligible changed from XRD. The T of the four oligosaccharides, especially for sucrose (69.50 °C) and lactose (95.67 °C), revealed the freeze-dried liposomes had formed vitrification matrix, which could prevent liposomes from fusion via increasing the viscosity and reducing membrane mobility. The decrease in T of sucrose (147.67 °C) and lactose (181.67 °C), and the changes in functional group of phospholipid and hygroscopic capacity of lyophilized liposomes indicated oligosaccharides replaced water molecules to interact with phospholipids by hydrogen bonds. It can be concluded that the protection mechanism of sucrose and lactose as lyoprotectant was attributed to the combination of vitrification theory and water replacement hypothesis, while the water replacement hypothesis was dominated by fructooligosaccharide and inulin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.112608DOI Listing

Publication Analysis

Top Keywords

protection mechanism
16
liposomes
9
liposomes freeze-drying
8
fructooligosaccharide inulin
8
water replacement
8
replacement hypothesis
8
specific protection
4
mechanism
4
oligosaccharides
4
mechanism oligosaccharides
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!