A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physiology, quorum sensing, and proteomics of lactic acid bacteria were affected by Saccharomyces cerevisiae YE4. | LitMetric

Physiology, quorum sensing, and proteomics of lactic acid bacteria were affected by Saccharomyces cerevisiae YE4.

Food Res Int

College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China. Electronic address:

Published: April 2023

The interaction mode between lactic acid bacteria (LAB) and yeast in a fermentation system directly determines the quality of the products, thus understanding their mode of interaction can improve product quality. The present study investigated the effects of Saccharomyces cerevisiae YE4 on LAB from the perspectives of physiology, quorum sensing (QS), and proteomics. The presence of S. cerevisiae YE4 slowed down the growth of Enterococcus faecium 8-3 but had no significant effect on acid production or biofilm formation. S. cerevisiae YE4 significantly reduced the activity of autoinducer-2 at 19 h in E. faecium 8-3 and at 7-13 h in Lactobacillus fermentum 2-1. Expression of the QS-related genes luxS and pfs was also inhibited at 7 h. Moreover, a total of 107 E. faecium 8-3 proteins differed significantly in coculture with S. cerevisiae YE4-these proteins are involved in metabolic pathways including biosynthesis of secondary metabolites; biosynthesis of amino acids; alanine, aspartate, and glutamate metabolism; fatty acid metabolism; and fatty acid biosynthesis. Among them, proteins involved in cell adhesion, cell wall formation, two-component systems, and ABC transporters were detected. Therefore, S. cerevisiae YE4 might affect the physiological metabolism of E. faecium 8-3 by affecting cell adhesion, cell wall formation, and cell-cell interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.112612DOI Listing

Publication Analysis

Top Keywords

cerevisiae ye4
20
faecium 8-3
16
physiology quorum
8
quorum sensing
8
sensing proteomics
8
lactic acid
8
acid bacteria
8
saccharomyces cerevisiae
8
proteins involved
8
metabolism fatty
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!