Plant growth-promoting rhizobacteria, such as Streptomyces pactum Act12, promote crop growth and stress resistance, but their contribution to fruit quality is still poorly understood. Herein we conducted a field experiment to ascertain the effects of S. pactum Act12-mediated metabolic reprogramming and underlying mechanisms in pepper (Capsicum annuum L.) fruit based on widely targeted metabolomic and transcriptomic profiling. We additionally performed metagenomic analysis to elucidate the potential relationship between S. pactum Act12-mediated reshaping of rhizosphere microbial communities and pepper fruit quality. Soil inoculation with S. pactum Act12 considerably increased the accumulation of capsaicinoids, carbohydrates, organic acids, flavonoids, anthraquinones, unsaturated fatty acids, vitamins, and phenolic acids in pepper fruit samples. Consequently, fruit flavor, taste, and color were modified, accompanied by elevated contents of nutrients and bioactive compounds. Increased microbial diversity and recruitment of potentially beneficial taxa were observed in inoculated soil samples, with crosstalk between microbial gene functions and pepper fruit metabolism. The reformed structure and function of rhizosphere microbial communities were closely associated with pepper fruit quality. Our findings indicate that S. pactum Act12-mediated interactions between rhizosphere microbial communities and pepper plants are responsible for intricate fruit metabolic reprogramming patterns, which enhance not only overall fruit quality but also consumer acceptability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.112587DOI Listing

Publication Analysis

Top Keywords

fruit quality
20
pepper fruit
16
pactum act12
12
pactum act12-mediated
12
rhizosphere microbial
12
microbial communities
12
fruit
10
targeted metabolomic
8
metabolomic transcriptomic
8
reprogramming patterns
8

Similar Publications

Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.

View Article and Find Full Text PDF

Organic agriculture is expanding worldwide, driven by expectations of improving food quality and soil health. However, while organic certification by regulatory bodies such as the United States Department of Agriculture and the European Union confirms compliance with organic standards that prohibit synthetic chemical inputs, there is limited oversight to verify that organic practices, such as the use of authentic organic fertilizer sources, are consistently applied at the field level. This study investigated the elemental content of carbon (C) and nitrogen (N) and their stable isotopes (δ13C and δ15N) in seven different crops grown under organic or conventional practices to assess their applicability as a screening tool to verify the authenticity of organic labeled produce.

View Article and Find Full Text PDF

Background: Cultivated strawberry (Fragaria xananassa Duch.), an allo-octoploid species arising from at least 3 diploid progenitors, poses a challenge for genomic analysis due to its high levels of heterozygosity and the complex nature of its polyploid genome.

Results: This study developed the complete haplotype-phased genome sequence from a short-day strawberry, 'Florida Brilliance' without parental data, assembling 56 chromosomes from telomere to telomere.

View Article and Find Full Text PDF

The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions.

View Article and Find Full Text PDF

The intricate relationship between the chemical composition and sensory attributes of various pineapple ( var. ) cultivars was investigated using multivariate statistical analysis. Our findings revealed that high hedonic ratings for pineapples are partially attributed to their distinct flavor profiles such as tropical fruit, sweetness, coconut, and floral aroma and flavor and textural qualities like juiciness and fibrousness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!