Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alzheimer's disease (AD) is a well-known neurodegenerative brain disease, and no curative treatment has yet been developed. The main symptoms include various brain lesions, caused by amyloid β (Aβ) aggregation, and cognitive decline. Therefore, it is believed that substances that control Aβ will inhibit the onset of Alzheimer's disease and slow its progression. In this study, the effect of phyllodulcin, a major component of hydrangea, on Aβ aggregation and brain pathology in an animal model of AD was studied. Phyllodulcin inhibited the aggregation of Aβ and decomposed the pre-aggregated Aβ in a concentration-dependent manner. In addition, it inhibited the cytotoxicity of Aβ aggregates. Oral administration of phyllodulcin improved Aβ-induced memory impairments in normal mice, reduced Aβ deposition in the hippocampus, inhibited the activation of microglia and astrocytes, and improved synaptic plasticity in 5XFAD mice. These results suggest that phyllodulcin may be a candidate for the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.114511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!