In an emergency epidemic response, data providers supply data on a best-faith effort to modellers and analysts who are typically the end user of data collected for other primary purposes such as to inform patient care. Thus, modellers who analyse secondary data have limited ability to influence what is captured. During an emergency response, models themselves are often under constant development and require both stability in their data inputs and flexibility to incorporate new inputs as novel data sources become available. This dynamic landscape is challenging to work with. Here we outline a data pipeline used in the ongoing COVID-19 response in the UK that aims to address these issues. A data pipeline is a sequence of steps to carry the raw data through to a processed and useable model input, along with the appropriate metadata and context. In ours, each data type had an individual processing report, designed to produce outputs that could be easily combined and used downstream. Automated checks were in-built and added as new pathologies emerged. These cleaned outputs were collated at different geographic levels to provide standardised datasets. Finally, a human validation step was an essential component of the analysis pathway and permitted more nuanced issues to be captured. This framework allowed the pipeline to grow in complexity and volume and facilitated the diverse range of modelling approaches employed by researchers. Additionally, every report or modelling output could be traced back to the specific data version that informed it ensuring reproducibility of results. Our approach has been used to facilitate fast-paced analysis and has evolved over time. Our framework and its aspirations are applicable to many settings beyond COVID-19 data, for example for other outbreaks such as Ebola, or where routine and regular analyses are required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.epidem.2023.100676 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:
Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.
View Article and Find Full Text PDFJ Surg Educ
January 2025
Department of Sociology, McGill University, Montreal, Quebec, Canada.
Objective: Discussions related to the importance of seeking specific consent for sensitive (e.g., pelvic, rectal) exams performed on anesthetized patients by medical students have been growing.
View Article and Find Full Text PDFAm J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
Am J Emerg Med
January 2025
Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain; Emergency Department, Hospital Clínico Universitario, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain.
Background: The study of the inclusion of new variables in already existing early warning scores is a growing field. The aim of this work was to determine how capnometry measurements, in the form of end-tidal CO2 (ETCO2) and the perfusion index (PI), could improve the National Early Warning Score (NEWS2).
Methods: A secondary, prospective, multicenter, cohort study was undertaken in adult patients with unselected acute diseases who needed continuous monitoring in the emergency department (ED), involving two tertiary hospitals in Spain from October 1, 2022, to June 30, 2023.
Biomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!