A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterizing the mechanical function of the foot's arch across steady-state gait modes. | LitMetric

Characterizing the mechanical function of the foot's arch across steady-state gait modes.

J Biomech

Biomechanics Laboratory, The Pennsylvania State University, University Park, USA.

Published: April 2023

The arch of the human foot has historically been likened to either a truss, a rigid lever, or a spring. Growing evidence indicates that energy is stored, generated, and dissipated actively by structures crossing the arch, suggesting that the arch can further function in a motor- or spring-like manner. In the present study, participants walked, ran with a rearfoot strike pattern, and ran with a non-rearfoot strike pattern overground while foot segment motions and ground reaction forces were recorded. To quantify the midtarsal joint's (i.e., arch's) mechanical behavior, a brake-spring-motor index was defined as the ratio between midtarsal joint net work and the total magnitude of joint work. This index was statistically significantly different between each gait condition. Index values decreased from walking to rearfoot strike running to non-rearfoot strike running, indicating that the midtarsal joint was most motor-like when walking and most spring-like in non-rearfoot running. The mean magnitude of elastic strain energy stored in the plantar aponeurosis mirrored the increase in spring-like arch function from walking to non-rearfoot strike running. However, the behavior of the plantar aponeurosis could not account for a more motor-like arch in walking and rearfoot strike running, given the lack of main effect of gait condition on the ratio between net work and total work performed by force in the plantar aponeurosis about the midtarsal joint. Instead, the muscles of the foot are likely altering the motor-like mechanical function of the foot's arch, the operation of these muscles between gait conditions warrants further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2023.111529DOI Listing

Publication Analysis

Top Keywords

strike running
16
rearfoot strike
12
non-rearfoot strike
12
midtarsal joint
12
plantar aponeurosis
12
mechanical function
8
function foot's
8
foot's arch
8
energy stored
8
arch function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!