Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: The transcriptional activity of Pdx1 is modulated by a diverse array of coregulatory factors that govern chromatin accessibility, histone modifications, and nucleosome distribution. We previously identified the Chd4 subunit of the nucleosome remodeling and deacetylase complex as a Pdx1-interacting factor. To identify how loss of Chd4 impacts glucose homeostasis and gene expression programs in β-cells in vivo, we generated an inducible β-cell-specific Chd4 knockout mouse model. Removal of Chd4 from mature islet β-cells rendered mutant animals glucose intolerant, in part due to defects in insulin secretion. We observed an increased ratio of immature-to-mature insulin granules in Chd4-deficient β-cells that correlated with elevated levels of proinsulin both within isolated islets and from plasma following glucose stimulation in vivo. RNA sequencing and assay for transposase-accessible chromatin with sequencing showed that lineage-labeled Chd4-deficient β-cells have alterations in chromatin accessibility and altered expression of genes critical for β-cell function, including MafA, Slc2a2, Chga, and Chgb. Knockdown of CHD4 from a human β-cell line revealed similar defects in insulin secretion and alterations in several β-cell-enriched gene targets. These results illustrate how critical Chd4 activities are in controlling genes essential for maintaining β-cell function.
Article Highlights: Pdx1-Chd4 interactions were previously shown to be compromised in β-cells from human donors with type 2 diabetes. β-Cell-specific removal of Chd4 impairs insulin secretion and leads to glucose intolerance in mice. Expression of key β-cell functional genes and chromatin accessibility are compromised in Chd4-deficient β-cells. Chromatin remodeling activities enacted by Chd4 are essential for β-cell function under normal physiological conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202766 | PMC |
http://dx.doi.org/10.2337/db22-0939 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!