Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production.

Annu Rev Chem Biomol Eng

Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands; email:

Published: June 2023

In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-chembioeng-101121-074313DOI Listing

Publication Analysis

Top Keywords

scale-up
5
scale-up photochemical
4
photochemical reactions
4
reactions transitioning
4
transitioning lab
4
lab scale
4
scale industrial
4
industrial production
4
production decades
4
decades witnessed
4

Similar Publications

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Towards a Greener Future: Sustainable Innovations in the Extraction of Lavender ( spp.) Essential Oil.

Foods

January 2025

Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.

Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.

View Article and Find Full Text PDF

Metal Ion Supplementation to Boost Melanin Production by .

Int J Mol Sci

January 2025

Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Monte sant'Angelo Campus, Via Cintia 4, 80126 Naples, Italy.

As Streptomycetes might produce melanin to survive in stressful environmental conditions, like under metal exposure, supplementing metal ions to the growth medium could be a wise strategy for boosting the production of the pigment. The aim of this study was to test, for the first time, the possibility of boosting DSM40314 melanin biosynthesis by adding to the growth medium singularly or, at the same time, different concentrations (1.0, 1.

View Article and Find Full Text PDF

Protocatechuate acid (PCA) is a phenolic acid naturally synthesized by various organisms. Protocatechuic acid is synthesized by plants for physiological, metabolic functions, and self-defense, but extraction from plants is less efficient compared to the microbial culture process. The microbial synthesis of protocatechuic acid is sustainable and, due to its high yield, can save energy consumption when producing the same amount.

View Article and Find Full Text PDF

Efficient Synthesis of ,-Muconic Acid by Catechol Oxidation of Ozone in the Presence of a Base.

Molecules

January 2025

Graduate School of Science, Technology and Innovation, Kobe University, 1-1, Rokkodai, Kobe 657-0013, Hyogo, Japan.

Muconic acid, a crucial precursor in synthesizing materials like PET bottles and nylon, is pivotal for the anticipated growth in the textiles and plastics industries. This study presents a novel chemical synthesis route for ,-muconic acid (ccMA) using catechol. Biochemical methods face scale-up challenges due to microorganism sensitivity and complex extraction processes, while chemical methods involve environmentally harmful substances and have low yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!