Understanding the nanoscale water condensation dynamics in strong electric fields is important for improving the atmospheric modeling of cloud dynamics and emerging technologies utilizing electric fields for direct air moisture capture. Here, we use vapor-phase transmission electron microscopy (VPTEM) to directly image nanoscale condensation dynamics of sessile water droplets in electric fields. VPTEM imaging of saturated water vapor stimulated condensation of sessile water nanodroplets that grew to a size of ∼500 nm before evaporating over a time scale of a minute. Simulations showed that electron beam charging of the silicon nitride microfluidic channel windows generated electric fields of ∼10 V/m, which depressed the water vapor pressure and effected rapid nucleation of nanosized liquid water droplets. A mass balance model showed that droplet growth was consistent with electric field-induced condensation, while droplet evaporation was consistent with radiolysis-induced evaporation conversion of water to hydrogen gas. The model quantified several electron beam-sample interactions and vapor transport properties, showed that electron beam heating was insignificant, and demonstrated that literature values significantly underestimated radiolytic hydrogen production and overestimated water vapor diffusivity. This work demonstrates a method for investigating water condensation in strong electric fields and under supersaturated conditions, which is relevant to vapor-liquid equilibrium in the troposphere. While this work identifies several electron beam-sample interactions that impact condensation dynamics, quantification of these phenomena here is expected to enable delineating these artifacts from the physics of interest and accounting for them when imaging more complex vapor-liquid equilibrium phenomena with VPTEM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c08187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!