A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-wide profiling of rice Double-stranded RNA-Binding Protein 1-associated RNAs by targeted RNA editing. | LitMetric

Genome-wide profiling of rice Double-stranded RNA-Binding Protein 1-associated RNAs by targeted RNA editing.

Plant Physiol

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.

Published: May 2023

RNA-binding proteins (RBPs) play essential roles in regulating gene expression. However, the RNA ligands of RBPs are poorly understood in plants, not least due to the lack of efficient tools for genome-wide identification of RBP-bound RNAs. An RBP-fused adenosine deaminase acting on RNA (ADAR) can edit RBP-bound RNAs, which allows efficient identification of RNA ligands of RBPs in vivo. Here, we report the RNA editing activities of the ADAR deaminase domain (ADARdd) in plants. Protoplast experiments indicated that RBP-ADARdd fusions efficiently edited adenosines within 41 nucleotides (nt) of their binding sites. We then engineered ADARdd to profile the RNA ligands of rice (Oryza sativa) Double-stranded RNA-Binding Protein 1 (OsDRB1). Overexpressing the OsDRB1-ADARdd fusion protein in rice introduced thousands of A-to-G and T-to-C RNA‒DNA variants (RDVs). We developed a stringent bioinformatic approach to identify A-to-I RNA edits from RDVs, which removed 99.7% to 100% of background single-nucleotide variants in RNA-seq data. This pipeline identified a total of 1,798 high-confidence RNA editing (HiCE) sites, which marked 799 transcripts as OsDRB1-binding RNAs, from the leaf and root samples of OsDRB1-ADARdd-overexpressing plants. These HiCE sites were predominantly located in repetitive elements, 3'-UTRs, and introns. Small RNA sequencing also identified 191 A-to-I RNA edits in miRNAs and other sRNAs, confirming that OsDRB1 is involved in sRNA biogenesis or function. Our study presents a valuable tool for genome-wide profiling of RNA ligands of RBPs in plants and provides a global view of OsDRB1-binding RNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231461PMC
http://dx.doi.org/10.1093/plphys/kiad158DOI Listing

Publication Analysis

Top Keywords

rna ligands
16
rna editing
12
ligands rbps
12
rna
11
genome-wide profiling
8
double-stranded rna-binding
8
rna-binding protein
8
rbp-bound rnas
8
a-to-i rna
8
rna edits
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!