In this investigation, lactic acid bacteria (LAB) isolated from milk were tested for their antibacterial properties and improved the antimicrobial activity of these isolates using genome shuffling. A total of sixty-one isolates were found in eleven samples, which were then tested using the agar diffusion method for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa. Thirty-one strains exhibited antibacterial activity against at least one of the tested pathogens, with an inhibitory zone's diameter varying between 15.0 and 24.0 mm. Two isolates that showed the highest antimicrobial activity were identified as Lactobacillus plantarum CIP 103151 and Lactobacillus plantarum JCM 1149 according to 16S rRNA analysis. In the present study, applying genome shuffling approach significantly enhanced the antibacterial activity of L. plantarum. The initial populations were obtained via ultraviolet irradiation and were treated using the protoplast fusion method. The ideal condition for the production of protoplasts was 15 mg/ml of lysozyme and 10 μg/ml of mutanolysin. After two rounds of fusion, ten recombinants exhibited a significant increase in the inhibition zones versus S. aureus, S. typhimurium, P. aeruginosa, and E. coli, reaching up to 1.34, 1.31, 1.37, and 1.37-fold increase in inhibitory zone respectively. Random Amplified Polymorphic DNA results showed clear differences in DNA banding patterns among the wild strain of L. plantarum CIP 103151 and the three selected shuffled strains using primers 1283 & OPA09. On the other hand, no change was obtained using primers OPD03 neither among the wild strain and the three recombinant strains nor among the three shuffled strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-023-03556-w | DOI Listing |
( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFIn this study, we conducted a thorough analysis of (RT) and (COF) extracts with varying polarities using LC-MS chemical profiling and biological tests (antioxidant, antimicrobial, enzyme inhibition, and cytotoxic effects). The highest level of total phenolic content in the ethanol extract of RT with 75.82 mg GAE/g, followed by the infusions of RT (65.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch Islamic Azad University Semnan Iran.
Dental caries is a highly prevalent chronic condition globally. In recent years, scientists have turned to natural compounds such as plant extracts as an alternative to address concerns related to biofilm-mediated disease transmission, increasing bacterial resistance, and the adverse impacts of antibiotics. Consequently, this study investigated the antimicrobial properties of ethanolic, hydroethanolic, and aqueous extracts of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!