Cellular senescence is a stable cell cycle arrest, usually in response to internal and/or external stress, including telomere dysfunction, abnormal cellular growth, and DNA damage. Several chemotherapeutic drugs, such as melphalan (MEL) and doxorubicin (DXR), induce cellular senescence in cancer cells. However, it is not clear whether these drugs induce senescence in immune cells. We evaluated the induction of cellular senescence in T cells were derived from human peripheral blood mononuclear cells (PBMNCs) in healthy donors using sub-lethal doses of chemotherapeutic agents. The PBMNCs were kept overnight in RPMI 1640 medium with 2% phytohemagglutinin and 10% fetal bovine serum and then cultured in RPMI 1640 with 20 ng/mL IL-2 and sub-lethal doses of chemotherapeutic drugs (2 μM MEL and 50 nM DXR) for 48 h. Sub-lethal doses of chemotherapeutic agents induced phenotypes associated with senescence, such as the formation of γH2AX nuclear foci, cell proliferation arrest, and induction of senescence-associated beta-galactosidase (SA-β-Gal) activity, (control vs. MEL, DXR; median mean fluorescence intensity (MFI) 1883 (1130-2163) vs. 2233 (1385-2254), 2406.5 (1377-3119), respectively) in T cells. IL6 and SPP1 mRNA, which are senescence-associated secretory phenotype (SASP) factors, were significantly upregulated by sublethal doses of MEL and DXR compared to the control (P = 0.043 and 0.018, respectively). Moreover, sub-lethal doses of chemotherapeutic agents significantly enhanced the expression of programmed death 1 (PD-1) on CD3 + CD4 + and CD3 + CD8 + T cells compared to the control (CD4 + T cells; P = 0.043, 0.043, and 0.043, respectively, CD8 + T cells; P = 0.043, 0.043, and 0.043, respectively). Our results suggest that sub-lethal doses of chemotherapeutic agents induce senescence in T cells and tumor immunosuppression by upregulating PD-1 expression on T cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10238-023-01034-zDOI Listing

Publication Analysis

Top Keywords

sub-lethal doses
24
doses chemotherapeutic
24
chemotherapeutic agents
20
induce senescence
12
senescence cells
12
cellular senescence
12
cells
11
agents induce
8
pd-1 expression
8
chemotherapeutic drugs
8

Similar Publications

Ex vivo electrophysiological evaluation of peripheral nerve functioning following exposition of adult mice to the organophosphorus pesticide chlormephos.

Environ Toxicol Pharmacol

January 2025

Université Paris-Saclay, CEA, Institut des sciences du vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé (DMTS), Service d'Ingénierie Moléculaire pour la Santé (SIMoS), EMR CNRS/CEA 9004, 91191 Gif-sur-Yvette, France. Electronic address:

The organophosphorus pesticide chlormephos was tested for its potential peripheral neurotoxicity by analyzing the diphasic compound action potential (CAP) of sciatic nerves isolated from adult mice chronically exposed to a sub-lethal dose of this pesticide, compared with control age-matched animals being only exposed to the vehicle. No significant modification was detected between chlormephos-exposed and control groups in their nerve responsiveness to stimulus. Furthermore, similar values of CAP kinetic variables were obtained from the two mouse groups.

View Article and Find Full Text PDF

Pesticides, including fipronil, are used mainly in agriculture; however, in veterinary and animal husbandry, their potential use is to control the pests responsible for vector-borne diseases. Their residues in agriculture products and direct use on farms are responsible for potentially harming livestock and poultry. So, this study was designed to evaluate the toxico-pathological effects of fipronil on the immune system of poultry birds.

View Article and Find Full Text PDF

Phosphoproteomic analysis of X-ray-irradiated planarians provides novel insights into the DNA damage response.

Int J Biol Macromol

January 2025

College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China. Electronic address:

Phosphorylation plays a crucial role in the cellular response to radiation and cancer therapies, yet phosphoproteomics studies in planarians remain underexplored despite the organism's remarkable regenerative capacities. This study utilized advanced ion mobility mass spectrometry for 4D-label-free quantitative proteomics to identify phosphorylation sites associated with irradiation in planarians. A total of 33,284 phosphorylation sites from 15,505 phosphorylated peptides and 4710 unique phosphoproteins were identified.

View Article and Find Full Text PDF

Unlabelled: Bacterial genomic mutations in have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis.

View Article and Find Full Text PDF

Moonlighting antibiotics: the extra job of modulating biofilm formation.

Trends Microbiol

January 2025

Laboratorio de Estructura y Fisiología de Biofilms Microbianos, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, Ocampo y Esmeralda, (2000) Rosario, Argentina. Electronic address:

The widespread use of antibiotics to treat bacterial infections has led to the common perception that their only function is to inhibit growth or kill bacteria. However, it has become clear that when antibiotics reach susceptible bacteria at non-lethal concentrations, they perform additional functions that significantly impact bacterial physiology, shaping both individual and collective behaviors. A key bacterial behavior influenced by sub-lethal antibiotic doses is biofilm formation, a multicellular, surface-associated mode of growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!