Impairments in several domains of cognitive functions are observed in people with Type 2 Diabetes Mellitus (T2DM), often accompanied by low Brain-derived neurotrophic factor (BDNF) concentrations. Although aerobic and resistance exercise enhances cognitive functions and raises BDNF concentrations in several populations, it remained uncertain in T2DM subjects. This study compared the effects of a single bout of aerobic (AER, 40 min of treadmill walk at 90-95% of the maximum walk speed) or resistance (RES, 3 × 10 repetitions in eight exercises at 70% of 10-RM) exercise on specific cognitive domain performance and plasma BDNF concentrations of physically active T2DM subjects. Eleven T2DM subjects (9 women/2 men; 63 ± 7 years) performed two counterbalanced trials on non-consecutive days. Stroop Color and Word (SCW) task [assessing the attention (congruent condition) and inhibitory control (incongruent condition)], Visual response time (assessing the response time), and blood collection (for plasma BDNF concentrations) were performed pre and post-exercise sessions. With distinct magnitude, both AER and RES improved the incongruent-SCW (d = - 0.26 vs. - 0.43 in AER and RES, respectively; p < 0.05), RT (d = - 0.31 vs. - 0.52, p < 0.05), and RT (d = - 0.64 vs. - 0.21, p < 0.05). The congruent-SCW and RT were not statistically different. Plasma BDNF concentrations were elevated 11% in AER (d = 0.30) but decreased by 15% in RES (d = - 0.43). A single session of aerobic or resistance exercise similarly improved the inhibitory control and response time of physically active T2DM subjects. Nevertheless, aerobic and resistance exercise sessions induced an opposite clinical effect in plasma BDNF concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-023-06588-8DOI Listing

Publication Analysis

Top Keywords

bdnf concentrations
20
response time
12
plasma bdnf
12
t2dm subjects
12
aerobic resistance
8
resistance exercise
8
inhibitory control
8
type diabetes
8
cognitive functions
8
aer res
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!