Multi-wavelength excitable mid-infrared luminescence and energy transfer in core-shell nanoparticles for nanophotonics.

Nanoscale

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.

Published: March 2023

2 μm mid-infrared (MIR) light sources have shown great potential for broad applications in molecular spectroscopy, eye-safe lasers, biomedical systems and so on. However, previous research studies were mainly focused on conventional materials such as glasses, glass-ceramics and crystals, limiting the luminescence intensity and miniaturization of photonic devices. Here we report a new strategy to realize the multiple excitation wavelength responsive MIR emission in a single nanoparticle by employing an erbium sublattice as the sensitizing host. Intense 2 μm emission of Ho from its I → I optical transition was observed under 808, 980 and 1530 nm excitations. The possible energy transfer mechanism between Er and Ho ions was discussed. We also designed a core-shell-shell nanostructure by inserting an NaYF:Yb interlayer to maximize the absorption of 980 nm photons and enhance the 2 μm emission. The MIR luminescence under 808 nm excitation can be further improved by introducing Nd into the outermost shell and attaching indocyanine green dyes. These results present an efficient way for the development of MIR luminescent nanomaterials with great potential in the fields of MIR gain devices, nanosized MIR light sources, and nanophotonics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr06837kDOI Listing

Publication Analysis

Top Keywords

energy transfer
8
mir light
8
light sources
8
great potential
8
μm emission
8
mir
6
multi-wavelength excitable
4
excitable mid-infrared
4
mid-infrared luminescence
4
luminescence energy
4

Similar Publications

Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO-BaTiO core-shell nanowires (BTO@TiO) upon polarization in different pH environments.

View Article and Find Full Text PDF

Human RNA ligase 1 (Rlig1) catalyzes the ligation of 5'-phosphate to 3'-hydroxyl ends a conserved three-step mechanism. Rlig1-deficient HEK293 cells exhibit reduced cell viability and RNA integrity under oxidative stress, suggesting Rlig1's role in RNA repair maintenance. Reactive oxygen species (ROS) are linked to various diseases, including neurodegenerative disorders and cancer, where RNA damage has significant effects.

View Article and Find Full Text PDF

Introduction: Subsea applications recently received increasing attention due to the global expansion of offshore energy, seabed infrastructure, and maritime activities; complex inspection, maintenance, and repair tasks in this domain are regularly solved with pilot-controlled, tethered remote-operated vehicles to reduce the use of human divers. However, collecting and precisely labeling submerged data is challenging due to uncontrollable and harsh environmental factors. As an alternative, synthetic environments offer cost-effective, controlled alternatives to real-world operations, with access to detailed ground-truth data.

View Article and Find Full Text PDF

The GSAG:Ce scintillator represents a promising and cost-effective alternative to the expensive GGAG:Ce. Recent studies have attributed its low light yield to the thermal quenching effect. In this study, we employed the strategy of adding an yttrium (Y) admixture to the GSAG matrix to increase the thermal activation energy of thermal quenching.

View Article and Find Full Text PDF

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!