While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of E. coli. The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101003PMC
http://dx.doi.org/10.1128/spectrum.03347-22DOI Listing

Publication Analysis

Top Keywords

airborne
14
oxidative stress
12
loss viability
12
mechanisms driving
12
reactive oxygen
12
oxygen species
12
bacterial airborne
8
airborne loss
8
airborne decay
8
airborne transport
8

Similar Publications

Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.

Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.

View Article and Find Full Text PDF

Background: Growing evidence suggests that environmental pollutants exert a detrimental impact on female fertility. Among these pollutants, volatile organic compounds (VOCs), easily encountered in the environment, have garnered significant attention as prevalent airborne contaminants. Nevertheless, a definitive consensus regarding the association between VOCs and the incidence of infertility remains elusive.

View Article and Find Full Text PDF

Urinary oxidative stress biomarkers in nephrotoxicity induced by PM in a rat model.

Inhal Toxicol

January 2025

Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.

Objective: The present study evaluated urinary oxidative stress (OxS) biomarkers to explain the extrapulmonary effect of renal function decline due to subchronic inhalation exposure to particles smaller than 2.5 μm, as well as the correlation of the biomarkers with the particles' endotoxin content.

Materials And Methods: Adult male Sprague-Dawley rats were exposed to subchronic inhalation of particles smaller than 2.

View Article and Find Full Text PDF

Uptake and Transpiration of Solid and Hollow SiO Nanoparticles by Terrestrial Plant (Apium Graveolens var. secalinum).

Chemosphere

January 2025

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:

Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.

View Article and Find Full Text PDF

Battery technology has attained a key position as an energy storage technology in decarbonization of energy systems. Lithium-ion batteries have become the dominant technology currently used in consumer appliances, electric vehicles (EVs), and industrial applications. However, lithium-ion batteries are not alike and can have different cathode chemistries which makes their recycling more complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!