Premise: Determining how xylem vessel diameters vary among plants and across environments gives insights into different water-use strategies among species and ultimately their distributions. Here, we tested the vessel dimorphism hypothesis that the simultaneous occurrence of many narrow and a few wide vessels gives lianas an advantage over trees in seasonally dry environments.
Methods: We measured the diameters of 13,958 vessels from 15 liana species and 10,430 vessels from 16 tree species in a tropical seasonal rainforest, savanna, and subtropical evergreen broadleaved forest. We compared differences in mean and hydraulically weighted vessel diameter (MVD and D ), vessel density (VD), theoretical hydraulic conductivity (K ), vessel area fraction (VAF), and wood density (WD) between lianas and trees and among three sites.
Results: Nine liana species and four tree species had dimorphic vessels. From the tropical seasonal rainforest to the savanna, liana MVD, D and K decreased, and VD and WD increased, while only tree WD increased. From the tropical seasonal rainforest to the subtropical forest, six wood traits remained unchanged for lianas, while tree MVD, D and K decreased and VD increased. Trait space for lianas and trees were more similar in the savanna and more divergent in the subtropical forest compared to the tropical seasonal rainforest.
Conclusions: These results suggest that lianas tend to possess greater vessel dimorphism, which may explain how lianas grow well during seasonal drought, influencing their unique distribution across tropical rainfall gradients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajb2.16154 | DOI Listing |
PLoS One
January 2025
Department of Civil and Environmental Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan.
Rainfall-induced landslides are a frequent geohazard for tropical regions with prevalent residual soils and year-round rainy seasons. The water infiltration into unsaturated soil can be analyzed using the soil-water characteristic curve (SWCC) and permeability function which can be used to monitor and predict incoming landslides, showing the necessity of selecting the appropriate model parameter while fitting the SWCC model. This paper presents a set of data from six different sections of the studied slope at varying depths that are used to test the performance of three SWCC models, the van Genuchten-Mualem (vG-M), Fredlund-Xing (F-X) and Gardner (G).
View Article and Find Full Text PDFOecologia
January 2025
Laboratorio de Ecología, UBIPRO, FES Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, México.
Background matching and disruptive coloration are defense mechanisms of animals against visual predators. Disruptive coloration tends to evolve in microhabitats that are visually heterogeneous, while background matching is favored in microhabitats that are chromatically homogeneous. Controlling for the phylogeny, we explored the evolution of the coloration and the marking patterns in the sexual dichromatic and widely distributed neotropical grasshoppers of the genus Sphenarium.
View Article and Find Full Text PDFIntroduction: The increase in vapor pressure deficit (VPD) is among the expected change in futur climate, and understanding its effect on crop growth is of much significance for breeeding programs. Three groups (G1,G2 and G3) of pearl millet germplasm, originating from regions with different rainfall intensities, were grown in the field during period of high and low VPDs. The groups G1,G2 and G3 were respectively from Guinean (rainfall above 1000 mm), Soudanian (rainfall between 600 mm and 900 mm), and Sahelian zones (rainfall between 600 and 300 mm) of Africa.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany.
The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest.
View Article and Find Full Text PDFEcol Evol
January 2025
Colección Nacional de Arácnidos, Departamento de Zoologia, Instituto de Biologia Universidad Nacional Autónoma de México Mexico City Mexico.
Extensive grazing carried out freely by exotic goats represents an important source of anthropogenic degradation in seasonally dry tropical forests of Brazil. The presence of these herbivores may negatively impact the local fauna through the reduction of habitat complexity. In this study, we investigate the effect of goat farming in scorpion assemblage from Brazilian seasonally dry tropical forest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!