Background: Structural network damage is a potentially important mechanism by which cerebral small vessel disease (SVD) can cause cognitive impairment. As a central hub of the structural network, the role of thalamus in SVD-related cognitive impairments remains unclear. We aimed to determine the associations between the structural alterations of thalamic subregions and cognitive impairments in SVD.
Methods: In this cross-sectional study, 205 SVD participants without thalamic lacunes from the third follow-up (2020) of the prospective RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort), which was initiated in 2006, Nijmegen, were included. Cognitive functions included processing speed, executive function, and memory. Probabilistic tractography was performed from thalamus to 6 cortical regions, followed by connectivity-based thalamic segmentation to assess each thalamic subregion volume and connectivity (measured by mean diffusivity [MD] of the connecting white matter tracts) with the cortex. Least absolute shrinkage and selection operator regression analysis was conducted to identify the volumes or connectivity of the total thalamus and 6 thalamic subregions that have the strongest association with cognitive performance. Linear regression and mediation analyses were performed to test the association of least absolute shrinkage and selection operator-selected thalamic subregion volume or MD with cognitive performance, while adjusting for age and education.
Results: We found that higher MD of the thalamic-motor tract was associated with worse processing speed (β=-0.27; <0.001), higher MD of the thalamic-frontal tract was associated with worse executive function (β=-0.24; =0.001), and memory (β=-0.28; <0.001), respectively. The mediation analysis showed that MD of thalamocortical tracts mediated the association between corresponding thalamic subregion volumes and the cognitive performances in 3 domains.
Conclusions: Our results suggest that the structural alterations of thalamus are linked to cognitive impairment in SVD, largely depending on the damage pattern of the white matter tracts connecting specific thalamic subregions and cortical regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121245 | PMC |
http://dx.doi.org/10.1161/STROKEAHA.122.041687 | DOI Listing |
Geroscience
January 2025
Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
A healthy diet is a key determinant of successful aging. However, the psychological, social, and physiological changes associated with ageing often disrupt dietary behaviours. Hungary has one of the highest rates of chronic age-related diseases in the European Union, exacerbated by unhealthy dietary patterns and rapid population aging.
View Article and Find Full Text PDFGeroscience
January 2025
Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.
View Article and Find Full Text PDFAnn Nucl Med
January 2025
Department of Radiological Sciences, School of Health Science, Fukushima Medical University, 10-6 Sakae, Fukushima City, Fukushima, 960-8516, Japan.
Objective: This study aims to accurately classify ATN profiles using highly specific amyloid and tau PET ligands and MRI in patients with cognitive impairment and suspected Alzheimer's disease (AD). It also aims to explore the relationship between quantified amyloid and tau deposition and cognitive function.
Methods: Twenty-seven patients (15 women and 12 men; age range: 64-81 years) were included in this study.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India.
In examining the enduring consequences of diabetes, recent research has focused on the anticipated outcomes of the condition. Specifically, cognitive impairment has been linked to diabetes mellitus dating back to the discovery of insulin. This study delves into the neuroprotective effects of TZP, i.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
Stress is linked to oxidative imbalance, neuroendocrine system malfunction, and cognitive dysfunction. It is a recognized cause of neuropsychiatric diseases. Natural flavonoid apigenin (API) has neuroprotective and antidepressant properties, but little is known about its potential in restoring memory function under stress-related circumstances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!