An MRI Based Ischemic Stroke Classification - A Mechanism Oriented Approach.

Ann Indian Acad Neurol

Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India.

Published: November 2022

AI Article Synopsis

  • The Oxfordshire Community Stroke Project and the Trial of Org 10172 are currently standard ischemic stroke classification systems, which don't fully incorporate newer imaging technology like diffusion-weighted MRI (DW-MRI).
  • DW-MRI can precisely identify infarct locations and types, leading to a proposed classification system that includes various infarct types based on their imaging patterns.
  • This classification can aid in understanding the stroke mechanisms, prognosticating outcomes, and guiding further investigations and preventive strategies.

Article Abstract

Oxfordshire Community Stroke Project and Trial of Org 10172 in acute stroke treatment are the commonly used ischemic stroke classification systems at present. However, they underutilize the newer imaging technologies. Diffusion-weighted magnetic resonance imaging (DW-MRI) of the brain can detect the site and extent of infarcts accurately. From the MRI patterns, the mechanisms of ischemic stroke can be inferred. We propose to classify ischemic infarcts into the following types based on their DW-MRI appearance: cortical territorial infarcts, striatocapsular infarcts, superficial perforator infarcts, cortical and deep watershed infarcts, lacunar infarcts, long insular artery (LIA) infarcts, branch atheromatous disease (BAD) infarcts, corpus callosal infarcts, infratentorial infarcts, and unclassifiable infarcts. This DW-MRI-based classification of ischemic stroke is easy, fast, and mechanism oriented. A review of the literature reveals that cortical territorial, striatocapsular, and corpus callosal infarcts are associated with embolic sources and large artery intracranial atherosclerosis. Superficial perforator and LIA infarcts are also probably embolic. Watershed infarcts are frequently associated with severe carotid disease with microembolism or hemodynamic failure. Mechanisms of BAD infarcts include microatheroma, junctional plaque or a plaque within a parent artery blocking the orifice of a large, deep penetrating, or circumferential artery. Small lacunar infarcts are due to the lipohyalinosis of penetrating arteries. Types and mechanisms of infratentorial infarcts are similar to supratentorial infarcts. Such a classification system is useful for prognosticating acute stroke, arranging specific investigations, and planning strategies for secondary prevention and research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996528PMC
http://dx.doi.org/10.4103/aian.aian_365_22DOI Listing

Publication Analysis

Top Keywords

infarcts
19
ischemic stroke
16
stroke classification
8
mechanism oriented
8
acute stroke
8
cortical territorial
8
superficial perforator
8
watershed infarcts
8
lacunar infarcts
8
lia infarcts
8

Similar Publications

Biodegradable copper-containing mesoporous microspheres loaded with ginsenoside Rb1 for infarcted heart repair.

Biomater Adv

January 2025

Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address:

The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties.

View Article and Find Full Text PDF

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Mediators of the association between nut consumption and cardiovascular diseases: a two-step mendelian randomization study.

Sci Rep

January 2025

Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, People's Republic of China.

Previous observational studies have reported inconsistent associations between nut consumption and cardiovascular diseases (CVD). This study aims to identify the causal relationship between different types of nuts consumption and CVD, and to quantify the potential mediating effects of cardiometabolic factors. We utilized Genome-Wide Association Study (GWAS) data to assess the causal effects of nut consumption on CVD using two-sample Mendelian randomization (MR) and a two-step MR analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!