Spinal cord injury (SCI) is a refractory disease of the central nervous system with a high disability and incidence rate. In recent years, bioactive material combined with cell transplantation has been considered an effective method for the treatment of SCI. The present study encapsulated activated Schwann cells (ASCs) in a 3D gelatin methacryloyl (GelMA) hydrogel in order to investigate its therapeutic effects on SCI. ASCs were isolated from previously ligated rat sciatic nerves. Scanning electron microscopy and live/dead staining were used to evaluate the biocompatibility of hydrogels with the ASCs. The scaffold was transplanted into the spinal cord of rats in the hemisection model. Behavioral tests and hematoxylin and eosin staining were employed to assess the locomotion recovery and lesion areas before and after treatment. Cell apoptosis was evaluated using TUNEL staining and immunochemistry, and apoptosis-related protein expression was detected using western blot analysis. The ASCs exhibited a favorable survival and proliferative ability in the 3D GelMA hydrogel. The scaffold transplantation significantly reduced the cavities and improved functional recovery. Moreover, the GelMA/ASCs implants significantly inhibited cell apoptosis following SCI and this effect may be mediated via the p38 MAPK pathway. Overall, these findings indicated that ASCs combined with the 3D GelMA hydrogel may be a promising therapeutic strategy for SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995797PMC
http://dx.doi.org/10.3892/etm.2023.11843DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
gelma hydrogel
12
gelatin methacryloyl
8
hydrogel scaffold
8
activated schwann
8
schwann cells
8
functional recovery
8
cord injury
8
cell apoptosis
8
sci
5

Similar Publications

Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.

Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.

View Article and Find Full Text PDF

Purpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.

Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.

View Article and Find Full Text PDF

Prior knowledge changes how the brain processes sensory input. Whether knowledge influences initial sensory processing upstream of the brain, in the spinal cord, is unknown. Studying electric potentials recorded invasively and noninvasively from the human spinal cord at millisecond resolution, we find that the cord generates electric potentials at 600 hertz that are modulated by prior knowledge about the time of sensory input, as early as 13 to 16 milliseconds after stimulation.

View Article and Find Full Text PDF

Outcomes and complications of vertebral body tethering by patient gender.

Spine Deform

January 2025

Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55906, USA.

Purpose: Non-fusion surgical options for pediatric scoliosis management such as vertebral body tethering (VBT) offer an alternative to spinal fusion. With this study, we aim to evaluate the postoperative outcomes in boys versus girls who have undergone VBT. Our hypothesis is that girls and boys will have similar outcomes by 2-year follow-up.

View Article and Find Full Text PDF

Explaining cognitive function in multiple sclerosis through networks of grey and white matter features: a joint independent component analysis.

J Neurol

January 2025

NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.

Cognitive impairment (CI) in multiple sclerosis (MS) is only partially explained by whole-brain volume measures, but independent component analysis (ICA) can extract regional patterns of damage in grey matter (GM) or white matter (WM) that have proven more closely associated with CI. Pathology in GM and WM occurs in parallel, and so patterns can span both. This study assessed whether joint-ICA of GM and WM features better explained cognitive function compared to single-tissue ICA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!