This is a comprehensive review based on the published papers in the field of COVID-19 vaccines and vaccination. Many efforts have been made to develop vaccines to combat this pandemic. Since December 2020, more than 200 vaccines have been tested in various research stages and in clinical trials on humans, of which eight vaccines reached phase four clinical trials in humans and approved by FDA and EUA. After the Pfizer-BioNTech vaccine that had the highest efficacy (95%), the efficacy of the other vaccines are as follows: Moderna 94.5%, Sputnik V 91%, Novavax 89.7%, Sinopharm 79.3%, Oxford/AstraZenaca 70.4%, Johnson and Johnson 66.9%, and Sinovac 50.7%. At present, protein-based vaccines, with 35% of all available COVID-19 vaccines, are the most common technique in the vaccine production, and then there are vaccines of non-replicating viral vector (13.3%), mRNA1 (12.1%), DNA (10.2%), replicating viral vector (9.8%), and inactivated vaccines (8.2%). The most frequently recognized adverse effects within 7 days of each vaccine dose involved fever, fatigue, headache, chill, and myalgia. The mRNA-based vaccines were associated with a higher occurrence of local side effects (78.3 vs. 70.4%; Sig. = 0.064), whereas the viral vector-based vaccine was associated with a higher prevalence of systemic side effects (87.2 vs. 61%; Sig. < 0.001). Based on the evidence and articles in the field of vaccination, AstraZeneca-Oxford and Sinopharm vaccines reported the highest and lowest side effects, respectively. Because of being emerging, pathogenicity, and high infectivity of COVID-19, vaccination against the disease to prevent its incident rate and decrease the prevalence rate is recommended immediately. Being informed of various aspects of the existing vaccines such as efficacy, effectiveness, safety, etc.can accelerate to make effective and useful choices and consequently have a vaccinated community against the epidemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999094PMC
http://dx.doi.org/10.4103/ijpvm.ijpvm_513_21DOI Listing

Publication Analysis

Top Keywords

vaccines
13
covid-19 vaccines
12
side effects
12
comprehensive review
8
clinical trials
8
trials humans
8
viral vector
8
associated higher
8
review aspects
4
aspects sars-cov-2
4

Similar Publications

Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions.

Proc Natl Acad Sci U S A

January 2025

Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

College students have cited inconvenience, ease of forgetting, and lack of time as barriers to influenza (flu) vaccine receipt. We hypothesized that "pop-up" clinics and live-attenuated influenza vaccine (LAIV) would facilitate delivery and align with preferences of college students. During the 2023-2024 flu season, undergraduate participants were recruited to receive LAIV at 5 "pop-up" clinics across a large midwestern campus.

View Article and Find Full Text PDF

The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!