A series of fatty acid binary eutectic mixture/expanded graphite (FABEM/EG) composite phase change materials (CPCMs) were prepared by absorbing a liquid FABEM into the EG. The thermal properties, thermostability, and thermoreliability were determined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermal cycling tests, respectively. Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy (SEM) were used to analyze the chemical structure and microstructure, respectively. Thermal conductivity measurements and heat storage/release experiments were carried out to study the heat transfer performance. The DSC test results show that the phase transition temperatures and latent heat of these CPCMs are in the range of 17.8-55.2 °C and 134.9-176.2 J/g, respectively. FT-IR analysis indicates there is only a simple physical adsorption between EG and the PCM and no chemical reaction occurs. SEM results show that the fatty acid binary eutectic mixtures are well adsorbed in the pores of EG, and EG can provide a certain mechanical strength and prevent phase change materials from leaking. The thermal conductivity measurement and heat storage/release experiment show that the addition of EG greatly improves the thermal conductivities of the CPCMs. TGA test results and thermal cycle tests show that the CPCMs have excellent thermal stability and long-term cycling thermal reliability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996784PMC
http://dx.doi.org/10.1021/acsomega.2c07749DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
acid binary
12
binary eutectic
12
phase change
12
change materials
12
thermal
9
eutectic mixture/expanded
8
mixture/expanded graphite
8
thermal conductivity
8
heat storage/release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!