Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anticancer peptides (ACPs) are rising as a new strategy for cancer therapy. However, traditional laboratory screening to find and identify novel ACPs from hundreds to thousands of peptides is costly and time consuming. Here, a sequential procedure is applied to identify candidate ACPs from a computer-generated peptide library inspired by alpha-lactalbumin, a milk protein with known anticancer properties. A total of 2688 distinct peptides, 5-25 amino acids in length, are generated from alpha-lactalbumin. In silico ACP screening using the physicochemical and structural filters and three machine learning models lead to the top candidate peptides ALA-A1 and ALA-A2. In vitro screening against five human cancer cell lines supports ALA-A2 as the positive hit. ALA-A2 selectively kills A549 lung cancer cells in a dose-dependent manner, with no hemolytic side effects, and acts as a cell penetrating peptide without membranolytic effects. Sequential window acquisition of all theorical fragment ions-proteomics and functional validation reveal that ALA-A2 induces autophagy to mediate lung cancer cell death. This approach to identify ALA-A2 is time and cost-effective. Further investigations are warranted to elucidate the exact intracellular targets of ALA-A2. Moreover, these findings support the use of larger computational peptide libraries built upon multiple proteins to further advance ACP research and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000267 | PMC |
http://dx.doi.org/10.1002/gch2.202200213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!