Electromechanically reconfigurable plasmonic photodetector with a distinct shift in resonant wavelength.

Microsyst Nanoeng

Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-city, Tokyo 182-8585 Japan.

Published: March 2023

Plasmonic photodetectors have received increasing attention because their detection properties can be designed by tailoring their metal structures on surfaces without using any additional components. Reconfiguration of the plasmonic resonant state in a photodetector is relevant for various applications, including investigating in situ adaptive detection property changes, depending on the situation, and performing single-pixel spectroscopy in geometrically limited regions. However, the spectral responsivity change with conventional reconfiguration methods is relatively small. Here, we propose a plasmonic photodetector that reconfigures its spectral responsivity with electromechanical deformation instead of bias tuning. The photodetector consists of a gold plasmonic grating formed on an n-type silicon cantilever, and the spectral responsivity is reconfigured by electromechanically scanning at an incident angle to the grating on the cantilever. The photodetector exhibits peak shifts in spectral responsivity in a wavelength range from 1250 to 1310 nm after electromechanical reconfiguration. Finally, for potential future applications, we demonstrate near-infrared spectroscopy using the photodetector. This photodetector has the potential to be adopted as a near-infrared spectrometer in industrial silicon imaging systems because its structure enables subbandgap photodetection on silicon by a Schottky junction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998386PMC
http://dx.doi.org/10.1038/s41378-023-00504-4DOI Listing

Publication Analysis

Top Keywords

spectral responsivity
16
plasmonic photodetector
8
photodetector
7
plasmonic
5
electromechanically reconfigurable
4
reconfigurable plasmonic
4
photodetector distinct
4
distinct shift
4
shift resonant
4
resonant wavelength
4

Similar Publications

Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability.

View Article and Find Full Text PDF

A spectroradiometer serves as a powerful instrument for measuring the spectral radiance of a target. The spectral radiance calibration function determines the measurement accuracy of the spectroradiometer. However, the general full-field calibration method results in higher spectral radiance values when dealing with targets that only partially fill the field of view (FOV).

View Article and Find Full Text PDF

The mid-wave multispectral detector combines the traditional spectrometer and infrared detector technologies to provide image information and spectral information at the same time, which has an important role in both civil and military fields. To solve the working band limitation and low energy utilization, this paper presents an integrated superlattice mid-wave multispectral hypersurface detector that can be used for computational multispectroscopy for the first time, which consists of photonic crystal (PC) plates of GaSb material, and uses PC microstructures to modulate the incident spectra, which can be used to reconstruct incident signals with computational multispectroscopy methods. In this paper, the finite difference time domain method (FDTD) is used to simulate the structural parameters of different PCs, and finally calculate the correlation coefficients of the transmission spectra of the different structures as well as the energy utilization rate.

View Article and Find Full Text PDF

Infrared (IR) photodetectors play a crucial role in modern technologies due to their ability to operate in various environmental conditions. This study developed high-performance InSe/GaAs interdiffusion heterostructure photodetectors with broadband response using liquid-phase method. It is believed that an InGaAs layer and InSe have been formed at the interface through the mutual diffusion of elements, resulting in a detection spectral range spanning from 0.

View Article and Find Full Text PDF

Scattering-type scanning near-field optical microscopy (-SNOM) under the excitation of single cycle picosecond (ps) pulse provides access to terahertz (THz) time-resolved nanoscopy. However, the development of THz nanoscopy has been greatly limited due to the inherently low efficiency of the scattered field and the convolution of the intrinsic material response with the extrinsic response of the cantilevered tip. In this work, we quantitatively study the near-field time-delayed pulse transients of resonant cantilevered tips, observing localized tip-enhanced coupling as well as delocalized collective charge oscillations propagating as resonant surface waves along cantilevered tips.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!