Background: Serum miR-186-5p levels are increased in acute myocardial infarction (AMI) patients and might contribute to assessing the prognosis of AMI patients. In this study, we further investigated the underlying molecular mechanism of miR-186-5p that participated in the pathological processes of myocardial ischemia.
Methods: The AMI models of rats and oxygen-glucose deprivation (OGD) models of H9c2 cells were established. Bioinformatics databases, luciferase reporting, and western blotting assays were performed to identify the regulatory target of miR-186-5p. Transfection and functional experiments were conducted to further define the possible molecular mechanism of miR-186-5p during the process of glucose deficiency and hypoxia.
Results: The level of miR-186-5p was found to significantly decrease in H9c2 cells after OGD treatment, while it increased in the culture medium from OGD-treated H9c2 cells. Using bioinformatics databases, luciferase reporting, and western blotting assays, we identified that ERK1/2 might serve as the negative regulatory target of miR-186-5p. Combined with further transfection experiments, we indicated that miR-186-5p might inhibit the expression and activation of ERK1/2. This finding was also reflected in the reduction of their downstream cleaved caspase-3. Through functional experiments, we revealed that miR-186-5p might inhibit apoptosis and promote proliferation in OGD-treated H9c2 cells.
Conclusions: We demonstrated that miR-186-5p might suppress OGD-induced apoptosis in H9c2 cells by targeting the ERK1/2 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992618 | PMC |
http://dx.doi.org/10.21037/jtd-22-453 | DOI Listing |
Lab Chip
January 2025
Department of Nano Science and Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.
View Article and Find Full Text PDFInt Rev Immunol
January 2025
Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China.
Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.
View Article and Find Full Text PDFSci Rep
January 2025
Geriatric Center, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China.
Myocardial ischemia/reperfusion injury (MIRI) is a serious clinical complication that is caused by reperfusion therapy following myocardial infarction (MI). Mitochondria-related genes (Mito-RGs) play important roles in multiple diseases. However, the role of mitochondria-related genes in MIRI remains largely unknown.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Several studies have associated the epitranscriptomic RNA modification of N6-methyladenosine (mA) with cardiovascular diseases; however, how mA modification affects cardiomyocyte pyroptosis after myocardial infarction (MI) remains unknown. Here, we showed that AlkB homolog 5 (ALKBH5), an mA demethylase, is crucial in cardiomyocyte pyroptosis after MI. We used MI rat and mouse models, a cell hypoxia model of rat primary cardiomyocytes (RCMs), and rat embryonic ventricle cell line (H9c2) to explore the functional role of mA modification and ALKBH5 in the heart and cardiomyocytes.
View Article and Find Full Text PDFBiomed Mater
January 2025
University of Kentucky, 177 F Paul Anderson Tower, 512 Administration Drive, Lexington, Kentucky, 40506, UNITED STATES.
Rapid and strategic cell placement is necessary for high throughput tissue fabrication. Current adhesive cell patterning systems rely on fluidic shear flow to remove cells outside of the patterned regions, but limitations in washing complexity and uniformity prevent adhesive patterns from being widely applied. Centrifugation is commonly used to study the adhesive strength of cells to various substrates; however, the approach has not been applied to selective cell adhesion systems to create highly organized cell patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!