Genomic signatures of the protease and reverse transcriptase gene of HIV-1 from HIV infected North Indian patients who were under ART from 1 to ≤ 7 years were analyzed. The DNA from plasma samples of 9 patients and RNA from 57 patients were isolated and subjected to amplification for the protease and reverse transcriptase gene of HIV-1 subtype C. Then sequencing was carried out following the WHO dried blood spot protocol. The drug resistance mutation patterns were analyzed using the HIV Drug Resistance Database, Stanford University, USA. Lamivudine-associated drug-resistance mutations such as M184V/M184I, nevirapine-associated drug resistance mutations Y181C and H221Y, and efavirenz-associated drug resistance mutations M230I were observed in reverse transcriptase gene of archived DNA of two HIV-1 infected patients. No mutation was observed in the remaining 7 patients. Various computational tools and websites like viral epidemiological signature pattern analysis (VESPA), hyper mutation, SNAP version 2.1.1, and entropy were utilized for the analysis of the signature pattern of amino acids, hyper mutation, selection pressure, and Shannon entropy in the protease and reverse transcriptase gene sequences of the 9 archived DNA, 56 protease gene and 51 reverse transcriptase gene from the HIV-1 DNA amplified sequences of RNA. The HIV-1 Subtype-C (Gene bank accession number: AB023804) and first isolate HXB2 (Gene bank accession number: K03455.1) was taken as reference sequence. The signature amino acid sequences were identified in the protease and reverse transcriptase gene, no hyper mutation, highest entropy was marked in the amino acid positions and synonymous to non-synonymous nucleotide ratio was calculated in the protease and reverse transcriptase gene of 9 archived DNA sequences, 56 protease and 51 reverse transcriptase gene sequences of HIV-1 Subtype C isolates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997500 | PMC |
http://dx.doi.org/10.6026/97320630018371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!