AI Article Synopsis

  • Childhood neuroblastomas can shift between two cell states: an undifferentiated "mesenchymal" state and a more mature "adrenergic" state, influenced by core regulatory circuitries that aid in neural development.
  • LMO1 is crucial for establishing the adrenergic identity in neuroblastomas, with its expression levels linked to a specific genetic variation (G/T polymorphism) that alters an important motif in its gene.
  • Research using zebrafish shows that changing the G ATA genotype to a T ATA variant lowers the chance of neuroblastoma development by preventing the formation of the adrenergic cell state, indicating a preserved evolutionary mechanism between zebrafish and humans.

Article Abstract

Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like "mesenchymal" cell state and a more differentiated sympathetic "adrenergic" cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional co-factor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism G/T that affects a G ATA motif in the first intron of LMO1. Here we show that wild-type zebrafish with the G ATA genotype develop adrenergic neuroblastoma, while knock-in of the protective T ATA allele at this locus reduces the penetrance of MYCN-driven tumors, which are restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrates that T ATA/ T ATA tumors also exhibit a mesenchymal cell state and are low risk at diagnosis. Thus, conversion of the regulatory G ATA to a T ATA allele in the first intron of reduces the neuroblastoma initiation rate by preventing formation of the adrenergic cell state, a mechanism that is conserved over 400 million years of evolution separating zebrafish and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002714PMC
http://dx.doi.org/10.1101/2023.02.28.530457DOI Listing

Publication Analysis

Top Keywords

cell state
24
adrenergic cell
12
cell
8
childhood neuroblastomas
8
ata allele
8
mesenchymal cell
8
state
6
ata
6
neuroblastoma
5
genetic predisposition
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!